Meisner Jan, Vacher Morgane, Bearpark Michael J, Robb Michael A
Computational Chemistry Group, Institute of Theoretical Chemistry, University of Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany.
Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom.
J Chem Theory Comput. 2015 Jul 14;11(7):3115-22. doi: 10.1021/acs.jctc.5b00364.
Nonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle θ, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle θ/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient. In this work, we extend the concept to allow a complex rotation of diabatic states to form a nonstationary superposition of electronic states. Our main result is that this leads to an elliptical transformation of the effective potential energy surfaces; i.e., the magnitude of the initial nuclear gradient changes as well as its direction. We fully explore gradient changes that result from varying both θ and ϕ (the complex rotation angle) as a way of electronically controlling nuclear motion, through Ehrenfest dynamics simulations for benzene cation.
锥形交叉点附近的非绝热动力学在光化学中至关重要。众所周知,如果分支空间用极坐标表示,那么对于由角度θ表示的几何结构,相应的绝热态是通过具有混合角θ/2的 diabatic 态得到的。以等效的方式,可以研究 diabatic 态的实际旋转与由此产生的核梯度之间的关系。在这项工作中,我们扩展了这一概念,允许 diabatic 态进行复旋转以形成电子态的非稳态叠加。我们的主要结果是,这导致有效势能面的椭圆变换;即,初始核梯度的大小及其方向都会发生变化。我们通过对苯阳离子的 Ehrenfest 动力学模拟,充分探索了由于θ和ϕ(复旋转角)变化而导致的梯度变化,以此作为电子控制核运动的一种方式。