Suppr超能文献

锥形交叉点处核梯度的几何旋转:向非绝热态复旋转的扩展

Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States.

作者信息

Meisner Jan, Vacher Morgane, Bearpark Michael J, Robb Michael A

机构信息

Computational Chemistry Group, Institute of Theoretical Chemistry, University of Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany.

Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom.

出版信息

J Chem Theory Comput. 2015 Jul 14;11(7):3115-22. doi: 10.1021/acs.jctc.5b00364.

Abstract

Nonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle θ, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle θ/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient. In this work, we extend the concept to allow a complex rotation of diabatic states to form a nonstationary superposition of electronic states. Our main result is that this leads to an elliptical transformation of the effective potential energy surfaces; i.e., the magnitude of the initial nuclear gradient changes as well as its direction. We fully explore gradient changes that result from varying both θ and ϕ (the complex rotation angle) as a way of electronically controlling nuclear motion, through Ehrenfest dynamics simulations for benzene cation.

摘要

锥形交叉点附近的非绝热动力学在光化学中至关重要。众所周知,如果分支空间用极坐标表示,那么对于由角度θ表示的几何结构,相应的绝热态是通过具有混合角θ/2的 diabatic 态得到的。以等效的方式,可以研究 diabatic 态的实际旋转与由此产生的核梯度之间的关系。在这项工作中,我们扩展了这一概念,允许 diabatic 态进行复旋转以形成电子态的非稳态叠加。我们的主要结果是,这导致有效势能面的椭圆变换;即,初始核梯度的大小及其方向都会发生变化。我们通过对苯阳离子的 Ehrenfest 动力学模拟,充分探索了由于θ和ϕ(复旋转角)变化而导致的梯度变化,以此作为电子控制核运动的一种方式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验