Muehlhausen M-P, Janoske U, Oertel H
Institute of Fluid Mechanics, Karlsruhe Institute of Technology, KIT, Kaiserstr. 10, building 10.23, 76131, Karlsruhe, Germany.
Chair for Fluid Mechanics, Bergische Universität Wuppertal, Wuppertal, Germany.
Cardiovasc Eng Technol. 2015 Mar;6(1):8-18. doi: 10.1007/s13239-014-0205-7. Epub 2014 Dec 17.
Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects.
尽管像MRI这样基于图像的方法已经很成熟,但数值模拟有助于理解人体心脏功能。这种功能源于生物化学、结构力学和血流之间复杂的相互作用。整个系统的复杂性常常导致这三个部分中的某一个被忽视,这限制了简化模型与实际情况的相符程度。与具有给定壁运动的相同患者特定几何形状的模拟相比,本文重点研究了舒张期和收缩期心肌应力分布与心室血流之间的相互作用(施皮格尔,《流体力学对心脏手术规划的贡献》,2009年)。霍尔扎菲尔等人(《英国皇家学会哲学学报》A辑,367:3445 - 3475,2009年)提出的正交各向异性本构定律被应用于一个有限元软件包中,以模拟心肌的被动行为。然后,该定律针对收缩进行了修正。通过任意拉格朗日 - 欧拉(ALE)方法,将结构模型与一个包含血液流变学和循环系统的流动模型相耦合(奥特尔,《流体力学基础》第3版,施普林格科学 + 商业媒体出版社,2010年;奥特尔等人,《人体心脏流体力学建模》第3版,卡尔斯鲁厄大学出版社,2009年)。比较结果显示在流体流动方面有良好的定量和定性一致性。心肌的运动与生理学观察结果一致。计算得到的应力及其分布在生理范围内,似乎是合理的。所提出的耦合模型包含了许多对心脏功能至关重要的特征。可以计算壁应力以及特征性的心室流体流动。基于这些模拟,我们得出两个特征来定量评估健康状态,包括固体和流体力学方面。