Hunter P J, Nielsen P M, Smaill B H, LeGrice I J, Hunter I W
University of Auckland, New Zealand.
Crit Rev Biomed Eng. 1992;20(5-6):403-26.
A three-dimensional finite element model of the mechanical and electrical behavior of the heart is being developed in a collaboration among Auckland University, New Zealand; the University of California at San Diego, U.S.; and McGill University, Canada. The equations of continuum mechanics from the theory of finite deformation elasticity are formulated in a prolate spheroidal coordinate system and solved using a combination of Galerkin and collocation techniques. The finite element basis functions used for the dependent and independent variables range from linear Lagrange to cubic Hermite, depending on the degree of spatial variation and continuity required for each variable. Orthotropic constitutive equations derived from biaxial testing of myocardial sheets are defined with respect to the microstructural axes of the tissue at the Gaussian quadrature points of the model. In particular, we define the muscle fiber orientation and the newly identified myocardial sheet axis orientation throughout the myocardium using finite element fields with nodal parameters fitted by least-squares to comprehensive measurements of these variables. Electrical activation of the model is achieved by solving the FitzHugh-Nagumo equations with collocation at fixed material points of the anatomical finite element model. Electrical propagation relies on an orthotropic conductivity tensor defined with respect to the local material axes. The mechanical constitutive laws for the Galerkin continuum mechanics model are (1) an orthotropic "pole-zero" law for the passive mechanical properties of myocardium and (2) a Wiener cascade model of the active mechanical properties of the muscle fibers. This chapter concentrates on two aspects of the model: first, grid generation, including both the generation of nodal coordinates for the finite element mesh and the generation of orthotropic material axes at each computational point, and, second, the formulation of constitutive laws suitable for numerically intensive finite element computations. Extensions to this model and applications to the mechanical and electrical function of the heart are described in Chapter 16 by McCulloch and co-workers.
新西兰奥克兰大学、美国加利福尼亚大学圣地亚哥分校和加拿大麦吉尔大学正在合作开发一个心脏机械和电行为的三维有限元模型。有限变形弹性理论中的连续介质力学方程在长球坐标系中被公式化,并使用伽辽金法和配置法相结合的方式求解。用于因变量和自变量的有限元基函数范围从线性拉格朗日函数到三次埃尔米特函数,这取决于每个变量所需的空间变化程度和连续性。从心肌薄片的双轴测试得出的正交各向异性本构方程是相对于模型高斯积分点处组织的微观结构轴定义的。特别是,我们通过使用有限元场来定义整个心肌中的肌纤维方向和新确定的心肌薄片轴方向,这些有限元场的节点参数通过最小二乘法拟合到这些变量的综合测量值。通过在解剖有限元模型的固定材料点处进行配置来求解菲茨休 - 纳古莫方程,从而实现模型的电激活。电传播依赖于相对于局部材料轴定义的正交各向异性电导率张量。伽辽金连续介质力学模型的机械本构定律为:(1)心肌被动机械特性的正交各向异性“极点 - 零点”定律;(2)肌纤维主动机械特性的维纳级联模型。本章重点关注模型的两个方面:第一,网格生成,包括有限元网格节点坐标的生成以及每个计算点处正交各向异性材料轴的生成;第二,适合数值密集型有限元计算的本构定律的公式化。麦卡洛克及其同事在第16章中描述了该模型的扩展以及对心脏机械和电功能的应用。