Hirschvogel Marc, Bassilious Marina, Jagschies Lasse, Wildhirt Stephen M, Gee Michael W
Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, 85748 Garching b. München, Germany.
AdjuCor GmbH, Lichtenbergstr. 8, 85748 Garching b. München, Germany.
Int J Numer Method Biomed Eng. 2017 Aug;33(8):e2842. doi: 10.1002/cnm.2842. Epub 2017 Feb 16.
A model for patient-specific cardiac mechanics simulation is introduced, incorporating a 3-dimensional finite element model of the ventricular part of the heart, which is coupled to a reduced-order 0-dimensional closed-loop vascular system, heart valve, and atrial chamber model. The ventricles are modeled by a nonlinear orthotropic passive material law. The electrical activation is mimicked by a prescribed parameterized active stress acting along a generic muscle fiber orientation. Our activation function is constructed such that the start of ventricular contraction and relaxation as well as the active stress curve's slope are parameterized. The imaging-based patient-specific ventricular model is prestressed to low end-diastolic pressure to account for the imaged, stressed configuration. Visco-elastic Robin boundary conditions are applied to the heart base and the epicardium to account for the embedding surrounding. We treat the 3D solid-0D fluid interaction as a strongly coupled monolithic problem, which is consistently linearized with respect to 3D solid and 0D fluid model variables to allow for a Newton-type solution procedure. The resulting coupled linear system of equations is solved iteratively in every Newton step using 2 × 2 physics-based block preconditioning. Furthermore, we present novel efficient strategies for calibrating active contractile and vascular resistance parameters to experimental left ventricular pressure and stroke volume data gained in porcine experiments. Two exemplary states of cardiovascular condition are considered, namely, after application of vasodilatory beta blockers (BETA) and after injection of vasoconstrictive phenylephrine (PHEN). The parameter calibration to the specific individual and cardiovascular state at hand is performed using a 2-stage nonlinear multilevel method that uses a low-fidelity heart model to compute a parameter correction for the high-fidelity model optimization problem. We discuss 2 different low-fidelity model choices with respect to their ability to augment the parameter optimization. Because the periodic state conditions on the model (active stress, vascular pressures, and fluxes) are a priori unknown and also dependent on the parameters to be calibrated (and vice versa), we perform parameter calibration and periodic state condition estimation simultaneously. After a couple of heart beats, the calibration algorithm converges to a settled, periodic state because of conservation of blood volume within the closed-loop circulatory system. The proposed model and multilevel calibration method are cost-efficient and allow for an efficient determination of a patient-specific in silico heart model that reproduces physiological observations very well. Such an individual and state accurate model is an important predictive tool in intervention planning, assist device engineering and other medical applications.
介绍了一种针对特定患者的心脏力学模拟模型,该模型包含心脏心室部分的三维有限元模型,该模型与降阶的零维闭环血管系统、心脏瓣膜和心房模型相耦合。心室由非线性正交各向异性被动材料定律建模。电激活通过沿一般肌纤维方向作用的规定参数化主动应力来模拟。我们构建激活函数,以便对心室收缩和舒张的开始以及主动应力曲线的斜率进行参数化。基于成像的特定患者心室模型被预加载到舒张末期低压,以考虑成像的、有应力的构型。粘弹性罗宾边界条件应用于心基部和心外膜,以考虑周围的包埋情况。我们将三维固体 - 零维流体相互作用视为一个强耦合的整体问题,针对三维固体和零维流体模型变量进行一致的线性化,以允许采用牛顿型求解过程。在每个牛顿步中,使用基于物理的 2×2 块预处理对所得的耦合线性方程组进行迭代求解。此外,我们提出了新颖有效的策略,用于根据猪实验中获得的实验性左心室压力和搏出量数据校准主动收缩和血管阻力参数。考虑了两种心血管状况的示例状态,即应用血管舒张性β受体阻滞剂(BETA)后和注射血管收缩性去氧肾上腺素(PHEN)后。使用两阶段非线性多级方法对当前特定个体和心血管状态进行参数校准,该方法使用低保真心脏模型为高保真模型优化问题计算参数校正。我们讨论了两种不同的低保真模型选择在增强参数优化方面的能力。由于模型上的周期性状态条件(主动应力、血管压力和通量)事先未知且还取决于要校准的参数(反之亦然),我们同时进行参数校准和周期性状态条件估计。经过几次心跳后,由于闭环循环系统内血容量守恒,校准算法收敛到一个稳定的周期性状态。所提出的模型和多级校准方法具有成本效益,并且能够有效地确定一个能很好再现生理观察结果的特定患者计算机心脏模型。这样一个个体且状态准确的模型是干预规划、辅助设备工程和其他医学应用中的重要预测工具。