Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, 24118 Kiel, Germany.
Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany; Fachbereich Biologie und Synmikro, Philipps-Universität Marburg, Germany.
Trends Microbiol. 2016 Jan;24(1):12-25. doi: 10.1016/j.tim.2015.10.003. Epub 2015 Nov 12.
The theory of autotrophic origins of life posits that the first cells on Earth satisfied their carbon needs from CO2. At hydrothermal vents, spontaneous synthesis of methane via serpentinization links an energy metabolic reaction with a geochemical homologue. If the first cells were autotrophs, how did the first heterotrophs arise, and what was their substrate? We propose that cell mass roughly similar to the composition of Escherichia coli was the substrate for the first chemoorganoheterotrophs. Amino acid fermentations, pathways typical of anaerobic clostridia and common among anaerobic archaea, in addition to clostridial type purine fermentations, might have been the first forms of heterotrophic carbon and energy metabolism. Ribose was probably the first abundant sugar, and the archaeal type III RubisCO pathway of nucleoside monophosphate conversion to 3-phosphoglycerate might be a relic of ancient heterotrophy. Participation of chemiosmotic coupling and flavin-based electron bifurcation--a soluble energy coupling process--in clostridial amino acid and purine fermentations is consistent with an autotrophic origin of both metabolism and heterotrophy, as is the involvement of S(0) as an electron acceptor in the facilitated fermentations of anaerobic heterotrophic archaea.
自养起源理论假设,地球上最早的细胞通过 CO2 满足其碳需求。在热液喷口,蛇纹石化通过自发合成甲烷将能量代谢反应与地球化学同系物联系起来。如果最初的细胞是自养的,那么第一批异养生物是如何产生的,它们的底物是什么?我们提出,与大肠杆菌组成大致相似的细胞质量可能是第一批化能有机异养生物的底物。除了梭菌型嘌呤发酵外,氨基酸发酵途径(典型的厌氧梭菌途径,在厌氧古菌中也很常见)以及厌氧古菌的典型途径可能是第一批异养碳和能量代谢形式。核糖可能是第一种丰富的糖,而古菌 III 型 RubisCO 途径将核苷单磷酸转化为 3-磷酸甘油酸可能是古代异养的遗迹。在梭菌的氨基酸和嘌呤发酵中,化学渗透偶联和黄素基电子分叉(一种可溶性能量偶联过程)的参与与代谢和异养的自养起源一致,而 S(0) 作为电子受体参与厌氧异养古菌的促进发酵也是如此。