Ruiz-Blas Fátima, Bartholomäus Alexander, Yang Sizhong, Wagner Dirk, Henny Cynthia, Russell James M, Kallmeyer Jens, Vuillemin Aurèle
GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany.
ISME Commun. 2024 Sep 14;4(1):ycae112. doi: 10.1093/ismeco/ycae112. eCollection 2024 Jan.
Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone. Bathyarchaeia encode metabolic machinery to cycle and assimilate polysulfides via sulfhydrogenase, sulfide dehydrogenase, and heterodisulfide reductase, using dissimilatory sulfite reductase subunit E and rubredoxin as carriers. Their metagenome-assembled genomes showed that carbon fixation could proceed through the complete methyl-branch Wood-Ljungdahl pathway, conducting (homo)acetogenesis in the absence of methyl coenzyme M reductase. Further, their partial carbonyl-branch, assumed to act in tetrahydrofolate interconversions of C1 and C2 compounds, could support close interactions with methylotrophic methanogens in the fermentation zone. Thus, Bathyarchaeia appeared capable of coupling sulfur-redox reactions with fermentative processes, using electron bifurcation in a redox-conserving (homo)acetogenic Wood-Ljungdahl pathway, and revealing geochemical ferruginous conditions at the transition between the sulfate reduction and fermentation zone as their preferential niche.
在地球早期海洋历史中,含铁条件普遍存在,但就氧化还原过程和有机物质再矿化而言,我们对缺氧、富铁、贫硫酸盐沉积物中的生物地球化学循环仍知之甚少。利用综合地球化学、细胞计数和宏基因组数据,我们研究了托武蒂湖(一个分层的含铁类似物)中微生物地下生物圈的分类和功能分布。在孔隙水中电子受体耗尽的区域以下,细胞密度呈指数下降,而微生物群落从铁还原菌和硫酸盐还原菌种群转变为发酵厌氧菌和产甲烷菌,在硫酸盐还原区以下主要选择嗜深渊古菌。嗜深渊古菌编码代谢机制,通过硫氢化酶、硫化物脱氢酶和异二硫键还原酶循环和同化多硫化物,使用异化亚硫酸盐还原酶亚基E和红素氧还蛋白作为载体。它们的宏基因组组装基因组表明,碳固定可以通过完整的甲基分支伍德-Ljungdahl途径进行,在没有甲基辅酶M还原酶的情况下进行(同型)产乙酸。此外,它们假定在C1和C2化合物的四氢叶酸相互转化中起作用的部分羰基分支,可以支持与发酵区中甲基营养型产甲烷菌的密切相互作用。因此,嗜深渊古菌似乎能够利用氧化还原保守的(同型)产乙酸伍德-Ljungdahl途径中的电子分叉,将硫氧化还原反应与发酵过程耦合起来,并揭示硫酸盐还原区和发酵区之间过渡地带的地球化学含铁条件是它们的优先生态位。