Suppr超能文献

质子梯度调节蛋白5(PGR5)和类PGR5蛋白1(PGRL1)的缺失可促进莱茵衣藻可持续的光驱动产氢,这是由于在硫缺乏条件下光系统II(PSII)活性增强所致。

Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

作者信息

Steinbeck Janina, Nikolova Denitsa, Weingarten Robert, Johnson Xenie, Richaud Pierre, Peltier Gilles, Hermann Marita, Magneschi Leonardo, Hippler Michael

机构信息

Institute of Plant Biology and Biotechnology, University of Münster Münster, Germany.

Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Institut de Biologie Environnementale et de Biotechnologie, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives Saint-Paul-lez-Durance, France ; CNRS, UMR 7265, Biologie Végétale et Microbiologie Environnementale Saint-Paul-lez-Durance, France ; Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Aix Marseille Université Saint-Paul-lez-Durance, France.

出版信息

Front Plant Sci. 2015 Oct 27;6:892. doi: 10.3389/fpls.2015.00892. eCollection 2015.

Abstract

Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

摘要

在莱茵衣藻pgr5 pgrl1双突变体及其各自的单突变体中研究了缺硫条件下的连续光产氢情况。在中等光照条件下,pgr5表现出最高的性能,产氢量比野生型多约8倍,使pgr5成为迄今为止报道的最有效的产氢体之一。pgr5 pgrl1双突变体在高光条件下缺硫开始时表现出氢爆发增加,但在这种情况下,由于光抑制和PSI降解增加,pgr5 pgrl1以及pgr5产生的氢总量减少。相比之下,pgrl1在高光和低光条件下都能有效产氢。用DCMU阻断光合电子传递几乎完全停止了突变菌株中的产氢,这表明增强产氢的电子主要途径是通过线性电子传递。事实上,与野生型相比,pgr突变菌株中的PSII保持更活跃和稳定。由于向厌氧状态的转变更快,并且由于耗氧能力增加而可以维持,这可能使pgr突变体中的PSII免受光氧化损伤。因此,我们得出结论,pgr5和pgrl1突变体在缺硫条件下产氢增加是由于PSII稳定性增加,从而使莱茵衣藻能够持续进行光驱动产氢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b7/4621405/42ae1940ab50/fpls-06-00892-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验