School of Information Science, JAIST , Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
Department of Chemistry, Princeton University , Princeton, New Jersey 08540, United States.
J Chem Theory Comput. 2015 Mar 10;11(3):907-17. doi: 10.1021/ct500401p. Epub 2015 Mar 2.
We revisit our investigation of the diffusion Monte Carlo (DMC) simulation of para-diiodobenzene (p-DIB) molecular crystal polymorphism. [See J. Phys. Chem. Lett. 2010, 1, 1789-1794.] We perform, for the first time, a rigorous study of finite-size effects and choice of nodal surface on the prediction of polymorph stability in molecular crystals using fixed-node DMC. Our calculations are the largest that are currently feasible using the resources of the K-computer and provide insights into the formidable challenge of predicting such properties from first principles. In particular, we show that finite-size effects can influence the trial nodal surface of a small (1 × 1 × 1) simulation cell considerably. Therefore, we repeated our DMC simulations with a 1 × 3 × 3 simulation cell, which is the largest such calculation to date. We used a density functional theory (DFT) nodal surface generated with the PBE functional, and we accumulated statistical samples with ∼6.4 × 10(5) core hours for each polymorph. Our final results predict a polymorph stability that is consistent with experiment, but they also indicate that the results in our previous paper were somewhat fortuitous. We analyze the finite-size errors using model periodic Coulomb (MPC) interactions and kinetic energy corrections, according to the CCMH scheme of Chiesa, Ceperley, Martin, and Holzmann. We investigate the dependence of the finite-size errors on different aspect ratios of the simulation cell (k-mesh convergence) in order to understand how to choose an appropriate ratio for the DMC calculations. Even in the most expensive simulations currently possible, we show that the finite size errors in the DMC total energies are much larger than the energy difference between the two polymorphs, although error cancellation means that the polymorph prediction is accurate. Finally, we found that the T-move scheme is essential for these massive DMC simulations in order to circumvent population explosions and large time-step biases.
我们重新研究了扩散蒙特卡罗(DMC)模拟para-二碘苯(p-DIB)分子晶体多晶型的方法。[参见《物理化学快报》2010 年,1,1789-1794。]我们首次使用固定节点 DMC 对有限尺寸效应和节点面选择对分子晶体多晶型稳定性预测的影响进行了严格的研究。我们的计算是目前使用 K 计算机资源进行的最大计算,为从第一性原理预测这些性质所面临的艰巨挑战提供了一些见解。特别是,我们表明,有限尺寸效应会对小(1×1×1)模拟单元的试探节点面产生相当大的影响。因此,我们用 1×3×3 的模拟单元重复了我们的 DMC 模拟,这是迄今为止最大的此类计算。我们使用 PBE 泛函生成的密度泛函理论(DFT)节点面,并为每种多晶型体积累了约 6.4×10(5)个核小时的统计样本。我们的最终结果预测了一种与实验一致的多晶型稳定性,但也表明我们之前的论文中的结果有些偶然。我们根据 Chiesa、Ceperley、Martin 和 Holzmann 的 CCMH 方案,使用模型周期性库仑(MPC)相互作用和动能修正来分析有限尺寸误差。我们研究了不同模拟单元纵横比(k-网格收敛)对有限尺寸误差的依赖性,以便了解如何为 DMC 计算选择合适的比例。即使在目前可能的最昂贵的模拟中,我们也表明 DMC 总能量中的有限尺寸误差远大于两种多晶型体之间的能量差,尽管误差抵消意味着多晶型体预测是准确的。最后,我们发现 T-移动方案对于这些大规模的 DMC 模拟是必不可少的,以避免种群爆炸和大时间步长偏差。