Prayogo Genki I, Shin Hyeondeok, Benali Anouar, Maezono Ryo, Hongo Kenta
School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
ACS Omega. 2021 Sep 16;6(38):24630-24636. doi: 10.1021/acsomega.1c03318. eCollection 2021 Sep 28.
Density functional theory (DFT) is a valuable tool for calculating adsorption energies toward designing materials for hydrogen storage. However, dispersion forces being absent from the local/semi-local theory, it remains unclear as to how the consideration of van der Waals (vdW) interactions affects such calculations. For the first time, we applied diffusion Monte Carlo (DMC) to evaluate the adsorption characteristics of a hydrogen molecule on a (5,5) armchair silicon-carbide nanotube (H-SiCNT). Within the DFT framework, we benchmarked various exchange-correlation functionals, including those recently developed for treating dispersion or vdW interactions. We found that the vdW-corrected DFT methods agree well with DMC, whereas the local (semilocal) functional significantly over (under)-binds. Furthermore, we fully optimized the H-SiCNT geometry within the DFT framework and investigated the correlation between the structure and charge density. The vdW contribution to the adsorption was found to be non-negligible at ∼1 kcal/mol per hydrogen molecule, which amounts to 9-29% of the ideal adsorption energy required for hydrogen storage applications.
密度泛函理论(DFT)是一种用于计算吸附能以设计储氢材料的重要工具。然而,由于局部/半局部理论中不存在色散力,范德华(vdW)相互作用对这类计算的影响仍不明确。我们首次应用扩散蒙特卡罗(DMC)方法来评估氢分子在(5,5)扶手椅型碳化硅纳米管(H-SiCNT)上的吸附特性。在DFT框架内,我们对各种交换关联泛函进行了基准测试,包括最近开发的用于处理色散或vdW相互作用的泛函。我们发现,经vdW校正的DFT方法与DMC结果吻合良好,而局部(半局部)泛函则存在显著的过(欠)束缚现象。此外,我们在DFT框架内对H-SiCNT的几何结构进行了完全优化,并研究了结构与电荷密度之间的相关性。发现vdW对吸附的贡献不可忽略,每个氢分子约为1 kcal/mol,占储氢应用所需理想吸附能的9 - 29%。