Suppr超能文献

使用核磁共振弛豫测量法观察到,在晶体Li(1.5)Al(0.5)Ti(1.5)(PO4)3中锂离子具有非常快的体扩散率。

Very fast bulk Li ion diffusivity in crystalline Li(1.5)Al(0.5)Ti(1.5)(PO4)3 as seen using NMR relaxometry.

作者信息

Epp Viktor, Ma Qianli, Hammer Eva-Maria, Tietz Frank, Wilkening Martin

机构信息

Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Stremayrgasse 9, 8010 Graz, Austria.

出版信息

Phys Chem Chem Phys. 2015 Dec 28;17(48):32115-21. doi: 10.1039/c5cp05337d. Epub 2015 Nov 18.

Abstract

The realization of large powerful all-solid-state batteries is still hampered by the availability of environmentally friendly and low-cost Li ion conductors that can easily be produced on a large scale and with high reproducibility. Advanced solid electrolytes benefit from fast ion-selective transport and non-flammability, but they may have low electrochemical stability with respect to Li metal. Sol-gel-synthesized lithium titanium aluminum phosphate Li(1.5)Al(0.5)Ti(1.5)(PO4)3 (LATP), which was prepared via a new synthesis route taking advantage of an annealing step at relatively low temperatures, has the potential to become one of the major players in this field although it may suffer from reduction upon direct contact with metallic lithium. Its ion dynamics is, however, as yet poorly understood. In the present study, (7)Li nuclear magnetic resonance (NMR) spectroscopy was used to monitor the key Li jump processes on the atomic scale. NMR relaxation clearly reveals heterogeneous dynamics comprising distinct ultra-fast and slower diffusion processes. The high Li ion self-diffusion coefficients deduced originate from a rapid Li exchange with activation energies as low as 0.16 eV which means that sol-gel synthesized LATP is superior to other solid electrolytes. Our NMR results fully support recent theoretical investigations on the underlying diffusion mechanism, indicating that to rapidly jump from site to site, the ions use interstitial sites connected by low-energy barriers in LATP.

摘要

大功率全固态电池的实现仍然受到环保且低成本锂离子导体可用性的阻碍,这类导体需要能够轻松大规模生产且具有高重现性。先进的固体电解质受益于快速的离子选择性传输和不可燃性,但它们相对于锂金属可能具有较低的电化学稳定性。通过利用相对低温退火步骤的新合成路线制备的溶胶 - 凝胶合成的磷酸锂钛铝Li(1.5)Al(0.5)Ti(1.5)(PO4)3(LATP),尽管它在与金属锂直接接触时可能会发生还原,但有潜力成为该领域的主要参与者之一。然而,其离子动力学目前仍知之甚少。在本研究中,利用(7)Li核磁共振(NMR)光谱在原子尺度上监测关键的Li跳跃过程。NMR弛豫清楚地揭示了包含不同超快和较慢扩散过程的非均匀动力学。推导得出的高锂离子自扩散系数源于低至0.16 eV活化能下的快速Li交换,这意味着溶胶 - 凝胶合成的LATP优于其他固体电解质。我们的NMR结果完全支持最近关于潜在扩散机制的理论研究,表明离子要在LATP中从一个位置快速跳跃到另一个位置,会利用由低能垒连接的间隙位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验