Suppr超能文献

混合人群中的HLA基因填充:以千人基因组数据作为训练集的评估

HLA imputation in an admixed population: An assessment of the 1000 Genomes data as a training set.

作者信息

Nunes Kelly, Zheng Xiuwen, Torres Margareth, Moraes Maria Elisa, Piovezan Bruno Z, Pontes Gerlandia N, Kimura Lilian, Carnavalli Juliana E P, Mingroni Netto Regina C, Meyer Diogo

机构信息

University of São Paulo, Department of Genetics and Evolutionary Biology, São Paulo, Brazil.

University of Washington, Department of Biostatistics, Seattle, WA, USA.

出版信息

Hum Immunol. 2016 Mar;77(3):307-312. doi: 10.1016/j.humimm.2015.11.004. Epub 2015 Nov 12.

Abstract

Methods to impute HLA alleles based on dense single nucleotide polymorphism (SNP) data provide a valuable resource to association studies and evolutionary investigation of the MHC region. The availability of appropriate training sets is critical to the accuracy of HLA imputation, and the inclusion of samples with various ancestries is an important pre-requisite in studies of admixed populations. We assess the accuracy of HLA imputation using 1000 Genomes Project data as a training set, applying it to a highly admixed Brazilian population, the Quilombos from the state of São Paulo. To assess accuracy, we compared imputed and experimentally determined genotypes for 146 samples at 4 HLA classical loci. We found imputation accuracies of 82.9%, 81.8%, 94.8% and 86.6% for HLA-A, -B, -C and -DRB1 respectively (two-field resolution). Accuracies were improved when we included a subset of Quilombo individuals in the training set. We conclude that the 1000 Genomes data is a valuable resource for construction of training sets due to the diversity of ancestries and the potential for a large overlap of SNPs with the target population. We also show that tailoring training sets to features of the target population substantially enhances imputation accuracy.

摘要

基于密集单核苷酸多态性(SNP)数据推算HLA等位基因的方法为MHC区域的关联研究和进化研究提供了宝贵资源。合适训练集的可用性对于HLA推算的准确性至关重要,并且纳入具有不同祖先的样本是混合人群研究的重要先决条件。我们使用千人基因组计划数据作为训练集评估HLA推算的准确性,并将其应用于高度混合的巴西圣保罗州基隆波人群体。为了评估准确性,我们比较了146个样本在4个HLA经典位点的推算基因型和实验确定的基因型。我们发现HLA-A、-B、-C和-DRB1的推算准确率分别为82.9%、81.8%、94.8%和86.6%(两位点分辨率)。当我们在训练集中纳入一部分基隆波个体时,准确率有所提高。我们得出结论,由于祖先的多样性以及SNP与目标人群的大量重叠可能性,千人基因组数据是构建训练集的宝贵资源。我们还表明,根据目标人群的特征定制训练集可显著提高推算准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46af/5609807/109da65d580b/nihms906063f1.jpg

相似文献

3
Imputation-Based HLA Typing with GWAS SNPs.基于 GWAS SNPs 的推断性 HLA 分型。
Methods Mol Biol. 2024;2809:127-143. doi: 10.1007/978-1-0716-3874-3_9.
8
Multi-population classical HLA type imputation.多群体经典 HLA 类型推断。
PLoS Comput Biol. 2013;9(2):e1002877. doi: 10.1371/journal.pcbi.1002877. Epub 2013 Feb 14.
9
HIBAG--HLA genotype imputation with attribute bagging.HIBAG——基于属性装袋法的HLA基因型推算
Pharmacogenomics J. 2014 Apr;14(2):192-200. doi: 10.1038/tpj.2013.18. Epub 2013 May 28.

引用本文的文献

1
Imputation-Based HLA Typing with GWAS SNPs.基于 GWAS SNPs 的推断性 HLA 分型。
Methods Mol Biol. 2024;2809:127-143. doi: 10.1007/978-1-0716-3874-3_9.
6
A genomic perspective on HLA evolution.从基因组角度看 HLA 进化。
Immunogenetics. 2018 Jan;70(1):5-27. doi: 10.1007/s00251-017-1017-3. Epub 2017 Jul 7.
7
Comparison of HLA allelic imputation programs.HLA 等位基因推算程序的比较。
PLoS One. 2017 Feb 16;12(2):e0172444. doi: 10.1371/journal.pone.0172444. eCollection 2017.

本文引用的文献

2
HLA typing using next generation sequencing: An overview.使用下一代测序技术进行HLA分型:综述。
Hum Immunol. 2015 Dec;76(12):887-90. doi: 10.1016/j.humimm.2015.03.001. Epub 2015 Mar 14.
5
6
HLA diversity in the 1000 genomes dataset.千人基因组数据集中的人类白细胞抗原(HLA)多样性。
PLoS One. 2014 Jul 2;9(7):e97282. doi: 10.1371/journal.pone.0097282. eCollection 2014.
8
Imputing amino acid polymorphisms in human leukocyte antigens.推断人类白细胞抗原中的氨基酸多态性。
PLoS One. 2013 Jun 6;8(6):e64683. doi: 10.1371/journal.pone.0064683. Print 2013.
9
HIBAG--HLA genotype imputation with attribute bagging.HIBAG——基于属性装袋法的HLA基因型推算
Pharmacogenomics J. 2014 Apr;14(2):192-200. doi: 10.1038/tpj.2013.18. Epub 2013 May 28.
10
Multi-population classical HLA type imputation.多群体经典 HLA 类型推断。
PLoS Comput Biol. 2013;9(2):e1002877. doi: 10.1371/journal.pcbi.1002877. Epub 2013 Feb 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验