Suppr超能文献

不同人群中基于单核苷酸多态性(SNP)的人类白细胞抗原(HLA)推断结果存在显著差异:最后一公里是最艰难的。

Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest.

作者信息

Pappas D J, Lizee A, Paunic V, Beutner K R, Motyer A, Vukcevic D, Leslie S, Biesiada J, Meller J, Taylor K D, Zheng X, Zhao L P, Gourraud P-A, Hollenbach J A, Mack S J, Maiers M

机构信息

Center for Genetics, Children's Hospital Research Institute, Oakland, CA, USA.

Department of Neurology, University of California, San Francisco, CA, USA.

出版信息

Pharmacogenomics J. 2018 May 22;18(3):367-376. doi: 10.1038/tpj.2017.7. Epub 2017 Apr 25.

Abstract

Four single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes.

摘要

使用千人基因组计划的单核苷酸多态性(SNP)和人类白细胞抗原(HLA)基因型对四种基于SNP的HLA推断方法(e-HLA、HIBAG、HLA*IMP:02和MAGPrediction)进行了训练,并评估了它们在人类基因组多样性项目细胞面板中准确推断分子HLA-A、-B、-C和-DRB1基因型的能力。对于HLA-A和HLA-C,所有方法的推断一致性都很高(>89%),但HLA-B和HLA-DRB1通常难以推断。总体而言,任何方法对所有HLA位点的正确推断率均低于27.8%。通过应用置信阈值,所有位点的一致性并未得到提高;仅依靠不同方法的置信分数,HLA-DRB1的一致性才有显著提高(+3.2%)。由于HLA复合体与人类健康和疾病研究高度相关,对基于SNP的HLA推断方法进行标准化评估对于推进基因组研究至关重要。HLA-B尤其是HLA-DRB1推断方法仍有很大的改进空间,且没有一种推断方法能像分子基因分型那样准确。应用大规模、具有不同祖先的HLA和SNP参考数据集以及多种推断方法,有可能使基于SNP的HLA推断方法成为确定HLA基因型的可行选择。

相似文献

3
Comparison of HLA allelic imputation programs.HLA 等位基因推算程序的比较。
PLoS One. 2017 Feb 16;12(2):e0172444. doi: 10.1371/journal.pone.0172444. eCollection 2017.
4
Accurate HLA type inference using a weighted similarity graph.利用加权相似图进行 HLA 类型的精确推断。
BMC Bioinformatics. 2010 Dec 14;11 Suppl 11(Suppl 11):S10. doi: 10.1186/1471-2105-11-S11-S10.
6
HIBAG--HLA genotype imputation with attribute bagging.HIBAG——基于属性装袋法的HLA基因型推算
Pharmacogenomics J. 2014 Apr;14(2):192-200. doi: 10.1038/tpj.2013.18. Epub 2013 May 28.
8
Assessing HLA imputation accuracy in a West African population.评估西非人群中 HLA 推测的准确性。
PLoS One. 2023 Sep 28;18(9):e0291437. doi: 10.1371/journal.pone.0291437. eCollection 2023.

引用本文的文献

4
Imputation-Based HLA Typing with GWAS SNPs.基于 GWAS SNPs 的推断性 HLA 分型。
Methods Mol Biol. 2024;2809:127-143. doi: 10.1007/978-1-0716-3874-3_9.
8
Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1.KIR3DL1/S1 杀伤细胞免疫球蛋白样受体的等位基因赋值。
PLoS Comput Biol. 2022 Feb 22;18(2):e1009059. doi: 10.1371/journal.pcbi.1009059. eCollection 2022 Feb.

本文引用的文献

4
HLA diversity in the 1000 genomes dataset.千人基因组数据集中的人类白细胞抗原(HLA)多样性。
PLoS One. 2014 Jul 2;9(7):e97282. doi: 10.1371/journal.pone.0097282. eCollection 2014.
7
Evaluation of HLA-DRB1 imputation using a Finnish dataset.使用芬兰数据集评估HLA-DRB1基因填充。
Tissue Antigens. 2014 May;83(5):350-5. doi: 10.1111/tan.12343. Epub 2014 Mar 26.
10
The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.NHGRI GWAS Catalog,一个经过精心策划的 SNP 与特征关联资源。
Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6. doi: 10.1093/nar/gkt1229. Epub 2013 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验