Pappas D J, Lizee A, Paunic V, Beutner K R, Motyer A, Vukcevic D, Leslie S, Biesiada J, Meller J, Taylor K D, Zheng X, Zhao L P, Gourraud P-A, Hollenbach J A, Mack S J, Maiers M
Center for Genetics, Children's Hospital Research Institute, Oakland, CA, USA.
Department of Neurology, University of California, San Francisco, CA, USA.
Pharmacogenomics J. 2018 May 22;18(3):367-376. doi: 10.1038/tpj.2017.7. Epub 2017 Apr 25.
Four single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes.
使用千人基因组计划的单核苷酸多态性(SNP)和人类白细胞抗原(HLA)基因型对四种基于SNP的HLA推断方法(e-HLA、HIBAG、HLA*IMP:02和MAGPrediction)进行了训练,并评估了它们在人类基因组多样性项目细胞面板中准确推断分子HLA-A、-B、-C和-DRB1基因型的能力。对于HLA-A和HLA-C,所有方法的推断一致性都很高(>89%),但HLA-B和HLA-DRB1通常难以推断。总体而言,任何方法对所有HLA位点的正确推断率均低于27.8%。通过应用置信阈值,所有位点的一致性并未得到提高;仅依靠不同方法的置信分数,HLA-DRB1的一致性才有显著提高(+3.2%)。由于HLA复合体与人类健康和疾病研究高度相关,对基于SNP的HLA推断方法进行标准化评估对于推进基因组研究至关重要。HLA-B尤其是HLA-DRB1推断方法仍有很大的改进空间,且没有一种推断方法能像分子基因分型那样准确。应用大规模、具有不同祖先的HLA和SNP参考数据集以及多种推断方法,有可能使基于SNP的HLA推断方法成为确定HLA基因型的可行选择。