Davey Norman E, Cyert Martha S, Moses Alan M
Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
Department of Biology, Stanford University, Stanford, CA, 94305, USA.
Cell Commun Signal. 2015 Nov 21;13:43. doi: 10.1186/s12964-015-0120-z.
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution - the evolution of a novel SLiM from "nothing" - adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
已对数百类和数千个实例的DNA调控元件、RNA基序和蛋白质短线性基序(SLiMs)进行了表征。高等真核生物中转录、转录后和翻译后调控复杂性的增加与基序使用的显著扩展同时发生。但是真核细胞是如何获得如此庞大的基序库的呢?在这篇综述中,我们整理了关于蛋白质基序进化的现有文献,并讨论了表明SLiMs可通过无序区域中的突变、插入和缺失获得的证据。我们提出了一种从无到有(ex nihilo)的SLiM进化机制——从“无”中进化出一种新的SLiM——向蛋白质序列中先前无功能的区域添加一个功能模块。在我们的模型中,高等真核生物蛋白质中的数百个基序结合结构域将简单的基序特异性与有用的功能联系起来,以创建一个大的功能基序空间。与这些基序结合结构域特异性匹配的可及性肽通过快速进化的无序区域中的突变不断产生和破坏,从而产生动态的新相互作用供应,这些新相互作用可能具有有利的表型新奇性。这为修饰现有相互作用网络提供了一个多样性库。进化压力将作用于这些基序以保留有益的实例。然而,在进化时间尺度上,大多数基序将因负选择和遗传漂变分别作用于有害和中性基序而丢失。鉴于所提出的模型与基因调控片段和(前体)mRNA中基序进化之间的相似性,我们认为我们对调控网络的理解将受益于创建一个描述转录、转录后和翻译后调控进化的共享模型。