Gagoski Dejan, Rube H Tomas, Rastogi Chaitanya, Melo Lucas A N, Li Xiaoting, Voleti Rashmi, Shah Neel H, Bussemaker Harmen J
Department of Biological Sciences, Columbia University, New York, NY, USA.
Department of Chemistry, Columbia University, New York, NY, USA.
bioRxiv. 2025 Jan 5:2024.12.23.630085. doi: 10.1101/2024.12.23.630085.
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence. Quantifying this sequence specificity is critical for deciphering phosphotyrosine-dependent signaling networks. In recent years, protein display technologies and deep sequencing have allowed researchers to profile SH2 domain binding across thousands of candidate ligands. Here, we present a concerted experimental and computational strategy that improves the predictive power of SH2 specificity profiling. Through multi-round affinity selection and deep sequencing with large randomized phosphopeptide libraries, we produce suitable data to train an additive binding free energy model that covers the full theoretical ligand sequence space. Our models can be used to predict signaling network connectivity and the impact of missense variants in phosphoproteins on SH2 binding.
短线性肽基序在细胞信号传导中发挥着重要作用。它们可以作为酶的修饰位点以及肽结合结构域的识别位点。SH2结构域特异性结合酪氨酸磷酸化蛋白,相互作用的亲和力在很大程度上取决于侧翼序列。量化这种序列特异性对于破译磷酸酪氨酸依赖性信号网络至关重要。近年来,蛋白质展示技术和深度测序使研究人员能够对数千种候选配体的SH2结构域结合情况进行分析。在此,我们提出了一种协同的实验和计算策略,可提高SH2特异性分析的预测能力。通过多轮亲和选择以及对大型随机磷酸肽文库进行深度测序,我们生成了合适的数据来训练一个加法结合自由能模型,该模型涵盖了完整的理论配体序列空间。我们的模型可用于预测信号网络的连通性以及磷酸化蛋白中错义变体对SH2结合的影响。