Cell. 2015 Nov 19;163(5):1214-1224. doi: 10.1016/j.cell.2015.10.031.
Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.
生物钟整合光和温度输入,以与昼夜周期保持同步。虽然时钟的光输入已经得到了很好的研究,但生物钟对温度的反应的分子机制仍知之甚少。我们发现,温度通过降解生物钟的起搏器蛋白 TIM 来使果蝇生物钟相位移动。这种降解在机制上不同于光依赖的 CRY 依赖性 TIM 降解。热 TIM 降解是由细胞质钙增加和钙调蛋白与 TIM 的结合触发的,并且由非典型钙蛋白酶 SOL 介导。因此,这种热输入途径和光依赖性光输入都集中在 TIM 上,为生物钟的光和温度输入的整合提供了分子机制。哺乳动物利用体温循环使外周时钟与大脑起搏器同步。有趣的是,下调哺乳动物的 SOL 同源物 SOLH 会阻止热 mPER2 降解和相位移动。因此,我们提出昆虫和哺乳动物的生物钟温度感应具有共同的原则。