Suppr超能文献

无需评估海森矩阵的自动过渡态搜索

Automated Transition State Searches without Evaluating the Hessian.

作者信息

Mallikarjun Sharada Shaama, Zimmerman Paul M, Bell Alexis T, Head-Gordon Martin

机构信息

Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.

出版信息

J Chem Theory Comput. 2012 Dec 11;8(12):5166-74. doi: 10.1021/ct300659d. Epub 2012 Oct 22.

Abstract

Accurate and speedy determination of transition structures (TSs) is essential for computational studies on reaction pathways, particularly when the process involves expensive electronic structure calculations. Many search algorithms require a good initial guess of the TS geometry, as well as a Hessian input that possesses a structure consistent with the desired saddle point. Among the double-ended interpolation methods for generation of the guess for the TS, the freezing string method (FSM) is proven to be far less expensive compared to its predecessor, the growing string method (GSM). In this paper, it is demonstrated that the efficiency of this technique can be improved further by replacing the conjugate gradient optimization step (FSM-CG) with a quasi-Newton line search coupled with a BFGS Hessian update (FSM-BFGS). A second crucial factor that affects the speed with which convergence to the TS is achieved is the quality and cost of the Hessian of the energy for the guessed TS. For electronic structure calculations, the cost of calculating an exact Hessian increases more rapidly with system size than the energy and gradient. Therefore, to sidestep calculation of the exact Hessian, an approximate Hessian is constructed, using the tangent direction and local curvature at the TS guess. It is demonstrated that the partitioned-rational function optimization algorithm for locating TSs with this approximate Hessian input performs at least as well as with an exact Hessian input in most test cases. The two techniques, FSM and approximate Hessian construction, therefore can significantly reduce costs associated with finding TSs.

摘要

准确且快速地确定过渡态(TSs)对于反应路径的计算研究至关重要,特别是当该过程涉及昂贵的电子结构计算时。许多搜索算法需要对过渡态几何结构有一个良好的初始猜测,以及一个具有与所需鞍点一致结构的海森矩阵输入。在用于生成过渡态猜测的双端插值方法中,与它的前身生长弦方法(GSM)相比,冻结弦方法(FSM)被证明成本要低得多。本文表明,通过用拟牛顿线搜索结合BFGS海森矩阵更新(FSM - BFGS)取代共轭梯度优化步骤(FSM - CG),可以进一步提高该技术的效率。影响收敛到过渡态速度的第二个关键因素是猜测的过渡态能量海森矩阵的质量和成本。对于电子结构计算,计算精确海森矩阵的成本随系统大小增长的速度比能量和梯度更快。因此,为了避免计算精确海森矩阵,利用过渡态猜测处的切线方向和局部曲率构建了一个近似海森矩阵。结果表明,在大多数测试案例中,使用这种近似海森矩阵输入来定位过渡态的分区有理函数优化算法的性能至少与使用精确海森矩阵输入时一样好。因此,FSM和近似海森矩阵构建这两种技术可以显著降低与寻找过渡态相关的成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验