Chantreau Majerus R, Robertson C, Habershon S
Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom.
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
J Chem Phys. 2021 Nov 28;155(20):204112. doi: 10.1063/5.0064685.
The reaction path Hamiltonian (RPH) can be used to calculate chemical reaction rate constants, going beyond transition-state theory in taking account of recrossing by providing an approximation to the dynamic transmission coefficient. However, the RPH necessitates the calculation of the Hessian matrix at a number of points along the minimum energy path; the associated computational cost stands as a bottleneck in RPH calculations, especially if one is interested in using high-accuracy electronic structure methods. In this work, four different Hessian update schemes (symmetric rank-1, Powell-symmetric Broyden, Bofill, and TS-BFGS updates) are assessed to see whether or not they reliably reproduce calculated transmission coefficients for three different chemical reactions. Based on the reactions investigated, the symmetric rank-1 Hessian update was the least appropriate for RPH construction, giving different transmission coefficients from the standard analytical Hessian approach, as well as inconsistent frequencies and coupling properties. The Bofill scheme, the Powell-symmetric Broyden scheme, and the TS-BFGS scheme were the most reliable Hessian update methods, with transmission coefficients that were in good agreement with those calculated by the standard RPH calculations. The relative accuracy of the different Hessian update schemes is further rationalized by investigating the approximated Coriolis and curvature coupling terms along the reaction-path, providing insight into when these schemes would be expected to work well. Furthermore, the associated computational cost associated with the RPH calculations was substantially reduced by the tested update schemes. Together, these results provide useful rules-of-thumb for using Hessian update schemes in RPH simulations.
反应路径哈密顿量(RPH)可用于计算化学反应速率常数,它超越了过渡态理论,通过提供动态传输系数的近似值来考虑再穿越。然而,RPH需要沿着最小能量路径在多个点计算海森矩阵;相关的计算成本成为RPH计算的瓶颈,特别是当人们对使用高精度电子结构方法感兴趣时。在这项工作中,评估了四种不同的海森矩阵更新方案(对称秩-1、鲍威尔对称布罗伊登、博菲尔和TS-BFGS更新),以查看它们是否能可靠地重现三种不同化学反应的计算传输系数。基于所研究的反应,对称秩-1海森矩阵更新最不适用于RPH构建,给出的传输系数与标准解析海森矩阵方法不同,频率和耦合性质也不一致。博菲尔方案、鲍威尔对称布罗伊登方案和TS-BFGS方案是最可靠的海森矩阵更新方法,其传输系数与标准RPH计算得到的传输系数高度一致。通过研究沿反应路径的近似科里奥利和曲率耦合项,进一步阐明了不同海森矩阵更新方案的相对准确性,从而深入了解这些方案何时有望良好运行。此外,经测试的更新方案大幅降低了与RPH计算相关联的计算成本。总之,这些结果为在RPH模拟中使用海森矩阵更新方案提供了有用的经验法则。