Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany.
Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
J Chem Theory Comput. 2011 Mar 8;7(3):742-52. doi: 10.1021/ct100476h. Epub 2011 Jan 21.
Continuum electrostatic theory was applied to compute redox potentials of rubredoxin (Rd) proteins. We used multiple side chain conformers of Rd crystal structures, optimized geometries of salt bridges, mutated residues, and residues in the neighborhood of the iron-sulfur complex (FeS complex) self-consistently for given solvent pH and redox potential. The following contributions to Rd redox potentials are discussed: side chain conformations, H-bond geometries of the FeS complex, dielectric environment, charged residues, and salt bridges. We considered 15 different Rd's (of different species/strains and mutants) with available crystal structures whose redox potentials vary between -86 mV and +31 mV. The computed redox potentials deviated by less than 16 mV, root-mean-square deviation (RMSD), from measured values. The amide H-bond geometry is considered to be crucial for the variation of Rd redox potentials. To test this assumption, we considered 14 mutant Rd's for which we modeled the structures based on Rd from WT Clostridium pasterianum (Cp) leaving the amide H-bond geometry of the FeS complex invariant. Here, we obtained an RMSD of only 14 mV with measured values demonstrating that the amide H bond geometries cannot be a major factor determining Rd redox potentials. We analyzed the factors determining the Rd redox potentials of a mesophilic and a thermophilic Rd differing by nearly 90 mV. We found that half of the difference is due to sequence and half is due to backbone variations. Albeit salt-bridge networks vary considerably between these two Rd's and are considered to be responsible for differences in thermostability, their overall influence on Rd redox potentials is small.
连续静电理论被应用于计算 rubredoxin (Rd) 蛋白的氧化还原电位。我们使用 Rd 晶体结构的多个侧链构象、优化盐桥的几何形状、突变残基以及铁-硫复合物 (FeS 复合物) 附近的残基,以适应给定的溶剂 pH 值和氧化还原电位。我们讨论了 Rd 氧化还原电位的以下贡献:侧链构象、FeS 复合物的氢键几何形状、介电环境、带电残基和盐桥。我们考虑了 15 种不同的 Rd(来自不同的物种/菌株和突变体),它们具有可用的晶体结构,其氧化还原电位在-86 mV 到+31 mV 之间变化。计算出的氧化还原电位与测量值的偏差小于 16 mV,均方根偏差 (RMSD)。酰胺氢键几何形状被认为是 Rd 氧化还原电位变化的关键。为了验证这一假设,我们考虑了 14 种突变 Rd,我们基于来自 WT Clostridium pasterianum (Cp) 的 Rd 构建了结构,保持 FeS 复合物的酰胺氢键几何形状不变。在这里,我们得到的 RMSD 仅为 14 mV,与测量值一致,表明酰胺氢键几何形状不能成为决定 Rd 氧化还原电位的主要因素。我们分析了导致近 90 mV 差异的嗜温和嗜热 Rd 氧化还原电位的因素。我们发现,差异的一半归因于序列,一半归因于骨架变化。尽管这两种 Rd 之间的盐桥网络差异很大,并且被认为是导致热稳定性差异的原因,但它们对 Rd 氧化还原电位的整体影响很小。