Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2012 Feb 14;8(2):610-7. doi: 10.1021/ct200340x. Epub 2012 Jan 24.
We present a quantum mechanical/molecular mechanical (QM/MM) explicit solvent model for the computation of standard reduction potentials E0. The QM/MM model uses density functional theory (DFT) to model the solute and a polarizable molecular mechanics (MM) force field to describe the solvent. The linear response approximation is applied to estimate E0 from the thermally averaged electron attachment/detachment energies computed in the oxidized and reduced states. Using the QM/MM model, we calculated one-electron E0 values for several aqueous transition-metal complexes and found substantially improved agreement with experiment compared to values obtained from implicit solvent models. A detailed breakdown of the physical effects in the QM/MM model indicates that hydrogen-bonding effects are mainly responsible for the differences in computed values of E0 between the QM/MM and implicit models. Our results highlight the importance of including solute-solvent hydrogen-bonding effects in the theoretical modeling of redox processes.
我们提出了一种用于计算标准还原电势 E0 的量子力学/分子力学(QM/MM)显式溶剂模型。QM/MM 模型使用密度泛函理论(DFT)来模拟溶质,并用极化分子力学(MM)力场来描述溶剂。线性响应近似用于从氧化态和还原态计算的热平均电子加成/消除能中估计 E0。使用 QM/MM 模型,我们计算了几种水相过渡金属配合物的单电子 E0 值,并与从隐式溶剂模型获得的值相比,与实验结果有了显著的改善。QM/MM 模型中物理效应的详细分解表明,氢键效应主要负责 QM/MM 和隐式模型之间 E0 计算值的差异。我们的结果强调了在氧化还原过程的理论建模中包含溶剂-溶质氢键效应的重要性。