Suppr超能文献

同源异型基因、演化发育生物学与ftz基因实例

Hox genes, evo-devo, and the case of the ftz gene.

作者信息

Pick Leslie

机构信息

Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD, 20742, USA.

出版信息

Chromosoma. 2016 Jun;125(3):535-51. doi: 10.1007/s00412-015-0553-6. Epub 2015 Nov 23.

Abstract

The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.

摘要

20世纪80年代同源异型基因的克隆引发了胚胎调控基因在动物各门类中广泛保守性的发现,这是进化发育生物学(evo-devo)领域的一个奠基性事件。长期以来人们都知道,地球上的动植物都共享一些基本的细胞过程,通常称为管家功能——比如基因组DNA中的信息存储、转录、翻译以及这些过程的机制、通用密码子使用和代谢酶等过程——但Hox基因却不同:这些基因的突变会导致昆虫身体部位发生“怪异”的同源异型转变,这当然很有趣,但预计是特异的。结果发现,导致这些怪异表型的基因是高度保守的Hox基因,它们在整个后生动物的胚胎模式形成中发挥作用。Hox基因如何发生变化以促进不同身体结构的发育,至今仍是进化发育生物学领域的核心问题。在这个纪念文章系列中,我回顾了围绕Hox基因广泛进化保守性发现的相关事件以及这一发现对发育生物学领域的影响。我重点介绍了在沃尔特·格林的实验室以及该实验室以前的成员所开展的研究,这些研究不断推动该领域向前发展,提出了新问题并开创了理解发育机制进化的新方法。

相似文献

1
Hox genes, evo-devo, and the case of the ftz gene.
Chromosoma. 2016 Jun;125(3):535-51. doi: 10.1007/s00412-015-0553-6. Epub 2015 Nov 23.
3
Variation and constraint in Hox gene evolution.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2211-6. doi: 10.1073/pnas.1210847110. Epub 2013 Jan 22.
4
5
Drosophila fushi tarazu. a gene on the border of homeotic function.
Curr Biol. 2001 Sep 18;11(18):1403-12. doi: 10.1016/s0960-9822(01)00443-2.
6
A screen for genes that interact with the Drosophila pair-rule segmentation gene fushi tarazu.
Genetics. 2004 Sep;168(1):161-80. doi: 10.1534/genetics.104.027250.
7
Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean.
Evol Dev. 2002 Mar-Apr;4(2):76-85. doi: 10.1046/j.1525-142x.2002.01063.x.
8
fushi tarazu: a Hox gene changes its role.
Bioessays. 2002 Nov;24(11):992-5. doi: 10.1002/bies.10180.
9
The bithorax complex of Drosophila an exceptional Hox cluster.
Curr Top Dev Biol. 2009;88:1-33. doi: 10.1016/S0070-2153(09)88001-0.
10
Conservation and variation in pair-rule gene expression and function in the intermediate-germ beetle .
Development. 2017 Dec 15;144(24):4625-4636. doi: 10.1242/dev.154039. Epub 2017 Oct 30.

引用本文的文献

2
A conserved sequence that sparked the field of evo-devo.
Dev Biol. 2025 Feb;518:1-7. doi: 10.1016/j.ydbio.2024.11.005. Epub 2024 Nov 15.
3
Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider.
Dev Genes Evol. 2023 Dec;233(2):107-121. doi: 10.1007/s00427-023-00707-9. Epub 2023 Jul 27.
4
Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, , reveals novel features.
GigaByte. 2022 Apr 8;2022:gigabyte49. doi: 10.46471/gigabyte.49. eCollection 2022.
5
Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations.
Front Cell Dev Biol. 2022 May 3;10:871950. doi: 10.3389/fcell.2022.871950. eCollection 2022.
7
RNAi-Based Functional Genomics in Hemiptera.
Insects. 2020 Aug 20;11(9):557. doi: 10.3390/insects11090557.
8
, First Identified in in 1910, Is Encoded by the Arylalkalamine N-Acetyltransferase (AANAT1) Gene.
G3 (Bethesda). 2020 Sep 2;10(9):3387-3398. doi: 10.1534/g3.120.401470.
9
Genomic insights into mite phylogeny, fitness, development, and reproduction.
BMC Genomics. 2019 Dec 9;20(1):954. doi: 10.1186/s12864-019-6281-1.
10

本文引用的文献

2
Homeodomain proteins: an update.
Chromosoma. 2016 Jun;125(3):497-521. doi: 10.1007/s00412-015-0543-8. Epub 2015 Oct 13.
3
The octopus genome and the evolution of cephalopod neural and morphological novelties.
Nature. 2015 Aug 13;524(7564):220-4. doi: 10.1038/nature14668.
4
Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species.
PLoS Genet. 2015 Jun 26;11(6):e1005279. doi: 10.1371/journal.pgen.1005279. eCollection 2015 Jun.
5
Low affinity binding site clusters confer hox specificity and regulatory robustness.
Cell. 2015 Jan 15;160(1-2):191-203. doi: 10.1016/j.cell.2014.11.041. Epub 2014 Dec 31.
6
Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.
Nature. 2014 Oct 30;514(7524):620-3. doi: 10.1038/nature13881.
8
The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene.
Evol Dev. 2013 Nov-Dec;15(6):406-17. doi: 10.1111/ede.12050.
9
Evolution of the pair rule gene network: Insights from a centipede.
Dev Biol. 2013 Oct 1;382(1):235-45. doi: 10.1016/j.ydbio.2013.06.017. Epub 2013 Jun 26.
10
Evolution of homeobox genes.
Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):31-45. doi: 10.1002/wdev.78. Epub 2012 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验