Suppr超能文献

功能状态可预测卒中人群住院康复后的急性护理再入院情况。

Functional Status Predicts Acute Care Readmissions from Inpatient Rehabilitation in the Stroke Population.

作者信息

Slocum Chloe, Gerrard Paul, Black-Schaffer Randie, Goldstein Richard, Singhal Aneesh, DiVita Margaret A, Ryan Colleen M, Mix Jacqueline, Purohit Maulik, Niewczyk Paulette, Kazis Lewis, Zafonte Ross, Schneider Jeffrey C

机构信息

Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2015 Nov 23;10(11):e0142180. doi: 10.1371/journal.pone.0142180. eCollection 2015.

Abstract

OBJECTIVE

Acute care readmission risk is an increasingly recognized problem that has garnered significant attention, yet the reasons for acute care readmission in the inpatient rehabilitation population are complex and likely multifactorial. Information on both medical comorbidities and functional status is routinely collected for stroke patients participating in inpatient rehabilitation. We sought to determine whether functional status is a more robust predictor of acute care readmissions in the inpatient rehabilitation stroke population compared with medical comorbidities using a large, administrative data set.

METHODS

A retrospective analysis of data from the Uniform Data System for Medical Rehabilitation from the years 2002 to 2011 was performed examining stroke patients admitted to inpatient rehabilitation facilities. A Basic Model for predicting acute care readmission risk based on age and functional status was compared with models incorporating functional status and medical comorbidities (Basic-Plus) or models including age and medical comorbidities alone (Age-Comorbidity). C-statistics were compared to evaluate model performance.

FINDINGS

There were a total of 803,124 patients: 88,187 (11%) patients were transferred back to an acute hospital: 22,247 (2.8%) within 3 days, 43,481 (5.4%) within 7 days, and 85,431 (10.6%) within 30 days. The C-statistics for the Basic Model were 0.701, 0.672, and 0.682 at days 3, 7, and 30 respectively. As compared to the Basic Model, the best-performing Basic-Plus model was the Basic+Elixhauser model with C-statistics differences of +0.011, +0.011, and + 0.012, and the best-performing Age-Comorbidity model was the Age+Elixhauser model with C-statistic differences of -0.124, -0.098, and -0.098 at days 3, 7, and 30 respectively.

CONCLUSIONS

Readmission models for the inpatient rehabilitation stroke population based on functional status and age showed better predictive ability than models based on medical comorbidities.

摘要

目的

急性护理再入院风险是一个日益受到关注的问题,已引起广泛重视,但住院康复患者急性护理再入院的原因复杂,可能是多因素的。对于参与住院康复的中风患者,通常会收集医疗合并症和功能状态两方面的信息。我们试图利用一个大型管理数据集,确定与医疗合并症相比,功能状态是否是住院康复中风患者急性护理再入院更强有力的预测指标。

方法

对2002年至2011年医疗康复统一数据系统中的数据进行回顾性分析,研究入住住院康复设施的中风患者。将基于年龄和功能状态预测急性护理再入院风险的基本模型与纳入功能状态和医疗合并症的模型(基本加模型)或仅包括年龄和医疗合并症的模型(年龄合并症模型)进行比较。比较C统计量以评估模型性能。

结果

共有803,124名患者:88,187名(11%)患者转回急性医院:3天内22,247名(2.8%),7天内43,481名(5.4%),30天内85,431名(10.6%)。基本模型在第3天、第7天和第30天的C统计量分别为0.701、0.672和0.682。与基本模型相比,表现最佳的基本加模型是基本+埃利克斯豪泽模型,其C统计量差异分别为+0.011、+0.011和+0.012,表现最佳的年龄合并症模型是年龄+埃利克斯豪泽模型,其在第3天、第7天和第30天的C统计量差异分别为-0.124、-0.098和-0.098。

结论

基于功能状态和年龄的住院康复中风患者再入院模型比基于医疗合并症的模型具有更好的预测能力。

相似文献

引用本文的文献

1
Prediction Models for Post-Stroke Hospital Readmission: A Systematic Review.中风后再入院的预测模型:一项系统综述。
Public Health Nurs. 2025 Jan-Feb;42(1):535-546. doi: 10.1111/phn.13441. Epub 2024 Oct 14.

本文引用的文献

6
Complexity science and the readmission dilemma.复杂性科学与再入院困境。
JAMA Intern Med. 2013 Apr 22;173(8):629-31. doi: 10.1001/jamainternmed.2013.4065.
9
Testing for improvement in prediction model performance.评估预测模型性能的改善情况。
Stat Med. 2013 Apr 30;32(9):1467-82. doi: 10.1002/sim.5727. Epub 2013 Jan 7.
10
Predictors of transfer from rehabilitation to acute care in burn injuries.烧伤康复后转至急性护理的预测因素。
J Trauma Acute Care Surg. 2012 Dec;73(6):1596-601. doi: 10.1097/TA.0b013e318270d73d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验