Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
Prog Neurobiol. 2017 Oct;157:273-291. doi: 10.1016/j.pneurobio.2015.10.005. Epub 2015 Nov 18.
Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.
大脑对能量代谢有极高的要求,葡萄糖是唯一的能量来源。在阿尔茨海默病、帕金森病和其他神经退行性疾病患者中,已经发现脑能量代谢和葡萄糖摄取减少,这为神经退行性疾病与能量代谢之间提供了明确的联系。另一方面,癌症,包括神经胶质瘤,增加了葡萄糖摄取,并依赖有氧糖酵解进行能量代谢。高效的氧化磷酸化向低效的有氧糖酵解途径(Warburg 效应)的转变为生物合成和增殖提供了大量的分子。目前的研究表明,亚甲蓝,一种有百年历史的药物,在复合物 I 的存在下可以从 NADH 中接收电子,并将其捐赠给细胞色素 c,提供了一种替代的电子转移途径。亚甲蓝增加耗氧量,降低糖酵解,并增加体外葡萄糖摄取。亚甲蓝可增强急性治疗大鼠的葡萄糖摄取和局部脑血流。此外,亚甲蓝在体外和阿尔茨海默病、帕金森病和亨廷顿病的啮齿动物模型中对神经元和星形胶质细胞提供了保护作用。在神经胶质瘤细胞中,亚甲蓝通过增强线粒体氧化磷酸化来逆转 Warburg 效应,使神经胶质瘤细胞周期在 S 期停滞,并抑制神经胶质瘤细胞增殖。因此,亚甲蓝激活 AMP 激活的蛋白激酶,抑制下游乙酰辅酶 A 羧化酶和细胞周期蛋白依赖性激酶。总之,越来越多的证据提供了一个概念验证,即通过替代线粒体电子传递增强线粒体氧化磷酸化可能提供针对神经退行性疾病的保护作用并抑制癌症增殖。