Locatelli Nicolas, Hamadeh Abbass, Abreu Araujo Flavio, Belanovsky Anatoly D, Skirdkov Petr N, Lebrun Romain, Naletov Vladimir V, Zvezdin Konstantin A, Muñoz Manuel, Grollier Julie, Klein Olivier, Cros Vincent, de Loubens Grégoire
Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, F91767 Palaiseau, France.
Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F91191 Gif-sur-Yvette, France.
Sci Rep. 2015 Nov 26;5:17039. doi: 10.1038/srep17039.
Due to their nonlinear properties, spin transfer nano-oscillators can easily adapt their frequency to external stimuli. This makes them interesting model systems to study the effects of synchronization and brings some opportunities to improve their microwave characteristics in view of their applications in information and communication technologies and/or to design innovative computing architectures. So far, mutual synchronization of spin transfer nano-oscillators through propagating spinwaves and exchange coupling in a common magnetic layer has been demonstrated. Here we show that the dipolar interaction is also an efficient mechanism to synchronize neighbouring oscillators. We experimentally study a pair of vortex-based spin transfer nano-oscillators, in which mutual synchronization can be achieved despite a significant frequency mismatch between oscillators. Importantly, the coupling efficiency is controlled by the magnetic configuration of the vortices, as confirmed by an analytical model and micromagnetic simulations highlighting the physics at play in the synchronization process.
由于其非线性特性,自旋转移纳米振荡器能够轻松地使其频率适应外部刺激。这使得它们成为研究同步效应的有趣模型系统,并鉴于其在信息和通信技术中的应用,为改善其微波特性带来了一些机会,和/或设计创新的计算架构。到目前为止,已经证明了自旋转移纳米振荡器通过在公共磁层中传播自旋波和交换耦合实现相互同步。在这里,我们表明偶极相互作用也是使相邻振荡器同步的有效机制。我们通过实验研究了一对基于涡旋的自旋转移纳米振荡器,其中尽管振荡器之间存在显著的频率失配,但仍可实现相互同步。重要的是,耦合效率由涡旋的磁结构控制,这一点得到了一个分析模型和微磁模拟的证实,这些模拟突出了同步过程中起作用的物理原理。