Yi Hai-Bo, Lee Han Myoung, Kim Kwang S
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China, Department of Chemistry and Center for Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea, and Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea.
J Chem Theory Comput. 2009 Jun 9;5(6):1709-17. doi: 10.1021/ct900154x.
The cation-π interactions have been intensively studied. Nevertheless, the interactions of π systems with heavy transition metals and their accurate conformations are not well understood. Here, we theoretically investigate the structures and binding characteristics of transition metal (TM) cations including novel metal cations (TM(n+) = Cu(+), Ag(+), Au(+), Pd(2+), Pt(2+), and Hg(2+)) interacting with benzene (Bz). For comparison, the alkali metal complex of Na(+)-Bz is also included. We employ density functional theory (DFT) and high levels of ab initio theory including Møller-Plesset second-order perturbation (MP2) theory, quadratic CI method with single and double substitutions (QCISD), and the coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). Each of the transition metal complexes of benzene exhibits intriguing binding characteristics, different from the typical cation-π interactions between alkali metal cations and aromatic rings. The complexes of Na(+), Cu(+), and Ag(+) favor the conformation of C6v symmetry with the cation above the benzene centroid (πcen). The formation of these complexes is attributed to the electrostatic interaction, while the magnitude of charge transfer has little correlation with the total interaction energy. Because of the TM(n+)←π donation, cations Au(+), Pd(2+), Pt(2+), and Hg(2+) prefer the off-center π conformation (πoff) or the π coordination to a C atom of the benzene. Although the electrostatic interaction is still important, the TM←π donation effect is responsible for the binding site. The TM(n+)-Bz complexes give some characteristic IR peaks. The complexes of Na(+), Cu(+), and Ag(+) give two IR active modes between 800 and 1000 cm(-1),which are inactive in the pure benzene. The complexes of Au(+), Pd(2+), Pt(2+), and Hg(2+) give characteristic peaks for the ring distortion, C-C stretching, and C-H stretching modes as well as significant red-shifts in the CH out-of-plane bending.
阳离子-π相互作用已得到深入研究。然而,π体系与重过渡金属的相互作用及其精确构象尚未得到很好的理解。在此,我们从理论上研究了包括新型金属阳离子(TM(n+) = Cu(+)、Ag(+)、Au(+)、Pd(2+)、Pt(2+)和Hg(2+))在内的过渡金属(TM)阳离子与苯(Bz)相互作用的结构和结合特性。为作比较,还包括了Na(+)-Bz的碱金属配合物。我们采用密度泛函理论(DFT)以及高水平的从头算理论,包括莫勒-普莱塞二阶微扰(MP2)理论、单双取代二次组态相互作用方法(QCISD)和单双及微扰三重激发耦合簇理论(CCSD(T))。苯的每种过渡金属配合物都表现出有趣的结合特性,不同于碱金属阳离子与芳环之间典型的阳离子-π相互作用。Na(+)、Cu(+)和Ag(+)的配合物倾向于具有C6v对称性的构象,阳离子位于苯质心(πcen)上方。这些配合物的形成归因于静电相互作用,而电荷转移的大小与总相互作用能几乎没有关联。由于TM(n+)←π给体作用,阳离子Au(+)、Pd(2+)、Pt(2+)和Hg(2+)更倾向于偏心π构象(πoff)或与苯的一个C原子形成π配位。尽管静电相互作用仍然很重要,但TM←π给体效应决定了结合位点。TM(n+)-Bz配合物给出了一些特征红外峰。Na(+)、Cu(+)和Ag(+)的配合物在800至1000 cm(-1)之间给出两个在纯苯中无活性的红外活性模式。Au(+)、Pd(2+)、Pt(2+)和Hg(2+)的配合物给出了环变形(v)、C-C伸缩和C-H伸缩模式的特征峰以及CH面外弯曲的显著红移。