Hu Q, Vidal G
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Phys Rev Lett. 2017 Jul 7;119(1):010603. doi: 10.1103/PhysRevLett.119.010603.
The generalization of the multiscale entanglement renormalization ansatz (MERA) to continuous systems, or cMERA [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.100402], is expected to become a powerful variational ansatz for the ground state of strongly interacting quantum field theories. In this Letter, we investigate, in the simpler context of Gaussian cMERA for free theories, the extent to which the cMERA state |Ψ^{Λ}⟩ with finite UV cutoff Λ can capture the spacetime symmetries of the ground state |Ψ⟩. For a free boson conformal field theory (CFT) in 1+1 dimensions, as a concrete example, we build a quasilocal unitary transformation V that maps |Ψ⟩ into |Ψ^{Λ}⟩ and show two main results. (i) Any spacetime symmetry of the ground state |Ψ⟩ is also mapped by V into a spacetime symmetry of the cMERA |Ψ^{Λ}⟩. However, while in the CFT, the stress-energy tensor T_{μν}(x) (in terms of which all the spacetime symmetry generators are expressed) is local, and the corresponding cMERA stress-energy tensor T_{μν}^{Λ}(x)=VT_{μν}(x)V^{†} is quasilocal. (ii) From the cMERA, we can extract quasilocal scaling operators O_{α}^{Λ}(x) characterized by the exact same scaling dimensions Δ_{α}, conformal spins s_{α}, operator product expansion coefficients C_{αβγ}, and central charge c as the original CFT. Finally, we argue that these results should also apply to interacting theories.
多尺度纠缠重整化假设(MERA)向连续系统的推广,即连续MERA(cMERA)[黑格曼等人,《物理评论快报》110, 100402 (2013年)PRLTAO0031 - 900710.1103/PhysRevLett.110.100402],有望成为强相互作用量子场论基态的一种强大变分假设。在本快报中,我们在自由理论的高斯cMERA这个更简单的背景下,研究具有有限紫外截断Λ的cMERA态|Ψ^Λ⟩能够捕捉基态|Ψ⟩的时空对称性的程度。作为一个具体例子,对于1 + 1维的自由玻色子共形场论(CFT),我们构建一个准局域酉变换V,它将|Ψ⟩映射到|Ψ^Λ⟩,并展示两个主要结果。(i)基态|Ψ⟩的任何时空对称性也被V映射到cMERA |Ψ^Λ⟩的时空对称性。然而,在CFT中,应力 - 能量张量T_μν(x)(所有时空对称生成元都用它来表示)是局域的,而相应的cMERA应力 - 能量张量T_μν^Λ(x)=VT_μν(x)V^†是准局域的。(ii)从cMERA中,我们可以提取出具有与原始CFT完全相同的标度维数Δ_α、共形自旋s_α、算符乘积展开系数C_αβγ和中心荷c的准局域标度算符O_α^Λ(x)。最后,我们认为这些结果也应该适用于相互作用理论。