Suppr超能文献

使用张量网络的哈密顿量重整化群流

Renormalization Group Flows of Hamiltonians Using Tensor Networks.

作者信息

Bal M, Mariën M, Haegeman J, Verstraete F

机构信息

Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium.

Vienna Center for Quantum Technology, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.

出版信息

Phys Rev Lett. 2017 Jun 23;118(25):250602. doi: 10.1103/PhysRevLett.118.250602. Epub 2017 Jun 20.

Abstract

A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.180405; S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.110504], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of the local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.

摘要

利用张量网络构建了二维经典配分函数哈密顿量的重整化群流。与张量网络重整化类似[G. 埃文布利和G. 维达尔,《物理评论快报》115, 180405 (2015)PRLTAO0031 - 900710.1103/PhysRevLett.115.180405;S. 杨、Z.-C. 顾和X.-G. 温,《物理评论快报》118, 110504 (2017)PRLTAO0031 - 900710.1103/PhysRevLett.118.110504],我们在临界时得到近似的不动点张量网络。然而,我们的形式体系在每一步都保持张量的正定性,因此能给出关于哈密顿流的一种解释。我们强调,张量网络方法与卡达诺夫的自旋块方法之间的关键区别可以通过每次抽取步骤中局部基的变化来理解,这一性质对于克服互信息的面积律至关重要。我们推导了不动点张量的代数关系,计算了临界指数,并在伊辛模型和六顶点模型上对我们的方法进行了基准测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验