Department of Mechanical Engineering and ‡Interdisciplinary Materials Science Program, Vanderbilt University , Nashville, Tennessee 37235, United States.
Nano Lett. 2016 Jan 13;16(1):543-8. doi: 10.1021/acs.nanolett.5b04187. Epub 2015 Dec 7.
A maximum sodium capacity of ∼35 mAh/g has hampered the use of crystalline carbon nanostructures for sodium ion battery anodes. We demonstrate that a diglyme solvent shell encapsulating a sodium ion acts as a "nonstick" coating to facilitate rapid ion insertion into crystalline few-layer graphene and bypass slow desolvation kinetics. This yields storage capacities above 150 mAh/g, cycling performance with negligible capacity fade over 8000 cycles, and ∼100 mAh/g capacities maintained at currents of 30 A/g (∼12 s charge). Raman spectroscopy elucidates the ordered, but nondestructive cointercalation mechanism that differs from desolvated ion intercalation processes. In situ Raman measurements identify the Na(+) staging sequence and isolates Fermi energies for the first and second stage ternary intercalation compounds at ∼0.8 eV and ∼1.2 eV.
最大钠容量为 ∼35 mAh/g,这阻碍了结晶碳纳米结构在钠离子电池阳极中的应用。我们证明,二甘醇溶剂壳包裹钠离子可以作为“不粘”涂层,促进钠离子快速插入结晶少层石墨烯,并绕过缓慢的去溶剂化动力学。这使得存储容量超过 150 mAh/g,在 8000 次循环中几乎没有容量衰减,在 30 A/g(约 12 s 充电)的电流下保持约 100 mAh/g 的容量。拉曼光谱阐明了有序但非破坏性的共插层机制,与去溶剂化离子插层过程不同。原位拉曼测量确定了 Na(+)的分级顺序,并分离了第一和第二阶段三元插层化合物的费米能级,约为 0.8 eV 和 1.2 eV。