文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于从水溶液中吸附去除双氯芬酸的氧化石墨烯-壳聚糖水凝胶:制备、表征、动力学和热力学建模

Graphene oxide-chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling.

作者信息

Mahmoodi Hossein, Fattahi Moslem, Motevassel Mohsen

机构信息

Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology Abadan Iran

出版信息

RSC Adv. 2021 Nov 11;11(57):36289-36304. doi: 10.1039/d1ra06069d. eCollection 2021 Nov 4.


DOI:10.1039/d1ra06069d
PMID:35492754
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9043336/
Abstract

This work aimed at developing a natural compound-based hydrogel adsorbent to remove diclofenac as a model pharmaceutical from water. First, graphene oxide-chitosan (GO-CTS) and amine graphene oxide-chitosan (AGO-CTS) hydrogel adsorbents were synthesized a facile mechanical mixing method. The synthesized materials were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, and thermogravimetric analysis (TGA) techniques. In the second stage, adsorption experiments were conducted to determine the best GO to CTS ratio and find the optimized adsorption parameters, including the initial drug concentration, adsorbent dosage, pH, and temperature. The results showed that the optimal GO to CTS mass ratio is 2 : 5 and thus the same ratio was selected as the AGO to CTS mass ratio to understand the effect of amine-functionalization on removal efficiency. The optimal adsorption parameters were determined to be pH of 5, of 100 ppm and dosage of 1.5 g L, where 90.42% and 97.06% removal was achieved for optimal GO-CTS and AGO-CTS hydrogel adsorbents, respectively. Langmuir and Freundlich isotherms models were employed to investigate the adsorption behavior of diclofenac onto the synthesized hydrogels. The results revealed that the adsorption tends to be of the monolayer type and homogeneous, as the results were in better accordance with the Langmuir model than the Freundlich model. The thermodynamics of adsorption demonstrated that the adsorption is exothermic, exhibiting higher removal efficiency at lower temperatures. Furthermore, Gibb's free energy change of adsorption (Δ) suggested that the adsorption is spontaneous, being more spontaneous for AGO-CTS than GO-CTS hydrogels. Finally, the regeneration ability of the hydrogel adsorbents was studied in five consecutive cycles. The adsorbent maintained its efficiency at a relatively high level for three cycles but a considerable decrease was observed between the third and the fourth cycle, indicating that the hydrogels were recoverable for three cycles.

摘要

这项工作旨在开发一种基于天然化合物的水凝胶吸附剂,以从水中去除作为模型药物的双氯芬酸。首先,通过简便的机械混合方法合成了氧化石墨烯-壳聚糖(GO-CTS)和胺基氧化石墨烯-壳聚糖(AGO-CTS)水凝胶吸附剂。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、布鲁诺尔-埃米特-泰勒(BET)、扫描和透射电子显微镜(SEM和TEM)、拉曼光谱以及热重分析(TGA)技术对合成材料进行了表征。在第二阶段,进行了吸附实验,以确定GO与CTS的最佳比例,并找到优化的吸附参数,包括初始药物浓度、吸附剂用量、pH值和温度。结果表明,GO与CTS的最佳质量比为2∶5,因此选择相同比例作为AGO与CTS的质量比,以了解胺功能化对去除效率的影响。确定最佳吸附参数为pH值5、初始药物浓度100 ppm和用量1.5 g/L,其中最佳GO-CTS和AGO-CTS水凝胶吸附剂的去除率分别达到90.42%和97.06%。采用朗缪尔和弗伦德利希等温线模型研究双氯芬酸在合成水凝胶上的吸附行为。结果表明,吸附倾向于单层且均匀,因为结果与朗缪尔模型的符合程度优于弗伦德利希模型。吸附热力学表明吸附是放热的,在较低温度下表现出更高的去除效率。此外,吸附的吉布斯自由能变化(Δ)表明吸附是自发的,AGO-CTS水凝胶比GO-CTS水凝胶更自发。最后,研究了水凝胶吸附剂在五个连续循环中的再生能力。吸附剂在三个循环中保持相对较高的效率,但在第三个和第四个循环之间观察到显著下降,表明水凝胶可回收三个循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/71082d73ee13/d1ra06069d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/55038d68d147/d1ra06069d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/c5a098e51c63/d1ra06069d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/123ac9a3ecfb/d1ra06069d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/f7549aa5518f/d1ra06069d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/69ca8bd4cca0/d1ra06069d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/9afca2615ef0/d1ra06069d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/e53afe6ed073/d1ra06069d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/9d8a5f119798/d1ra06069d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/575c0d7522e4/d1ra06069d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/523eb44141a1/d1ra06069d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0b8413479713/d1ra06069d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0f75760e6466/d1ra06069d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/377b9fd00a53/d1ra06069d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/f97e32270067/d1ra06069d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/2664c8cfea55/d1ra06069d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/fed5d55fd55b/d1ra06069d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0dd00e65f079/d1ra06069d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/71082d73ee13/d1ra06069d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/55038d68d147/d1ra06069d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/c5a098e51c63/d1ra06069d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/123ac9a3ecfb/d1ra06069d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/f7549aa5518f/d1ra06069d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/69ca8bd4cca0/d1ra06069d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/9afca2615ef0/d1ra06069d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/e53afe6ed073/d1ra06069d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/9d8a5f119798/d1ra06069d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/575c0d7522e4/d1ra06069d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/523eb44141a1/d1ra06069d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0b8413479713/d1ra06069d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0f75760e6466/d1ra06069d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/377b9fd00a53/d1ra06069d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/f97e32270067/d1ra06069d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/2664c8cfea55/d1ra06069d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/fed5d55fd55b/d1ra06069d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/0dd00e65f079/d1ra06069d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe1/9043336/71082d73ee13/d1ra06069d-f18.jpg

相似文献

[1]
Graphene oxide-chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling.

RSC Adv. 2021-11-11

[2]
Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics.

Environ Res. 2022-1

[3]
Methionine-Functionalized Graphene Oxide/Sodium Alginate Bio-Polymer Nanocomposite Hydrogel Beads: Synthesis, Isotherm and Kinetic Studies for an Adsorptive Removal of Fluoroquinolone Antibiotics.

Nanomaterials (Basel). 2021-2-25

[4]
Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution.

J Colloid Interface Sci. 2018-5-14

[5]
The effect of Fe-Zn mole ratio (2:1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high-efficiency removal of doxycycline.

Environ Res. 2023-2-1

[6]
Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies.

Environ Res. 2018-9-26

[7]
Adsorptive removal of P(V) and Cr(VI) by calcined Zn-Al-Fe ternary LDHs.

Water Sci Technol. 2021-5

[8]
Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies.

J Colloid Interface Sci. 2017-6-15

[9]
Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems.

Environ Sci Pollut Res Int. 2018-7-17

[10]
Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions: Study of sorption parameters.

Colloids Surf B Biointerfaces. 2017-10-7

引用本文的文献

[1]
Enhanced removal of emerging contaminants from tap water by developing graphene oxide and nanoplatelet hybrid aerogels.

RSC Adv. 2024-10-29

[2]
Chitosan Hydrogels for Water Purification Applications.

Gels. 2023-8-17

[3]
Removal of diclofenac by adsorption process studied in free-base porphyrin Zr-metal organic frameworks (Zr-MOFs).

RSC Adv. 2023-7-31

[4]
Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater.

Gels. 2023-6-1

[5]
Preparation of multifunctional hydrogels with accessible isothiouronium groups via radical cross-linking copolymerization.

Sci Rep. 2023-6-26

[6]
The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II.

BMC Oral Health. 2023-5-2

[7]
Recent Advances in Chitosan-Based Applications-A Review.

Materials (Basel). 2023-3-3

[8]
Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications.

Gels. 2022-12-30

[9]
The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment.

BMC Oral Health. 2023-1-13

本文引用的文献

[1]
Melamine-based functionalized graphene oxide and zirconium phosphate for high performance removal of mercury and lead ions from water.

RSC Adv. 2020-10-14

[2]
Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug.

J Environ Sci (China). 2020-2-19

[3]
Synthesis of Poly(methacrylic acid)/Montmorillonite Hydrogel Nanocomposite for Efficient Adsorption of Amoxicillin and Diclofenac from Aqueous Environment: Kinetic, Isotherm, Reusability, and Thermodynamic Investigations.

ACS Omega. 2020-2-5

[4]
Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water.

Int J Biol Macromol. 2019-3-28

[5]
Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water.

Environ Res. 2018-12-31

[6]
Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers.

Carbohydr Polym. 2018-5-16

[7]
Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution.

J Colloid Interface Sci. 2018-5-14

[8]
Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes.

J Environ Manage. 2018-5-9

[9]
Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite.

Environ Pollut. 2018-4-27

[10]
Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption.

Environ Sci Technol. 2017-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索