Suppr超能文献

病理学图像中用于盲染色分离的颜色分布循环混合建模

Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

作者信息

Li Xingyu, Plataniotis Konstantinos N

出版信息

IEEE J Biomed Health Inform. 2017 Jan;21(1):150-161. doi: 10.1109/JBHI.2015.2503720. Epub 2015 Nov 25.

Abstract

In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

摘要

在数字病理学中,为了解决病理图像中的颜色变化和组织学成分共定位问题,通常在光谱归一化和组织成分分割之前进行染色分解。本文研究了染色分解问题,这在代数中是一个自然的非负矩阵分解(NMF)问题,并介绍了一种由圆形颜色分析模块和基于NMF的计算模块组成的系统分析解决方案。与现有染色分解算法的范式不同,现有算法直接使用矩阵求逆运算从估计的染色光谱中计算染色比例,而本文介绍的解决方案通过概率推理分别估计染色光谱和染色深度。由于所提出的方法在颜色分析中特别关注消色差像素,并在像素聚类中考虑染色共现,因此它以最小的分解残差实现了一致且可靠的染色分解。特别是,考虑到色调的周期性和角度特性,我们提出使用圆形冯·米塞斯混合模型来分析色调分布,并提供一种基于颜色的完整像素软聚类解决方案,以解决由染色重叠引入的颜色混合问题。这一创新与饱和度加权计算相结合,使我们的研究对于弱染色和广谱染色有效。在多个公共病理数据集上进行的大量实验表明,我们的方法在分解有效性方面优于现有的盲染色分离方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验