Suppr超能文献

使用单倍型作为工具变量的因果遗传推断

Causal Genetic Inference Using Haplotypes as Instrumental Variables.

作者信息

Wang Fan, Meyer Nuala J, Walley Keith R, Russell James A, Feng Rui

机构信息

Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Center for Translational Lung Biology, Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

出版信息

Genet Epidemiol. 2016 Jan;40(1):35-44. doi: 10.1002/gepi.21940. Epub 2015 Dec 1.

Abstract

In genomic studies with both genotypes and gene or protein expression profile available, causal effects of gene or protein on clinical outcomes can be inferred through using genetic variants as instrumental variables (IVs). The goal of introducing IV is to remove the effects of unobserved factors that may confound the relationship between the biomarkers and the outcome. A valid inference under the IV framework requires pairwise associations and pathway exclusivity. Among these assumptions, the IV expression association needs to be strong for the casual effect estimates to be unbiased. However, a small number of single nucleotide polymorphisms (SNPs) often provide limited explanation of the variability in the gene or protein expression and can only serve as weak IVs. In this study, we propose to replace SNPs with haplotypes as IVs to increase the variant-expression association and thus improve the casual effect inference of the expression. In the classical two-stage procedure, we developed a haplotype regression model combined with a model selection procedure to identify optimal instruments. The performance of the new method was evaluated through simulations and compared with the IV approaches using observed multiple SNPs. Our results showed the gain of power to detect a causal effect of gene or protein on the outcome using haplotypes compared with using only observed SNPs, under either complete or missing genotype scenarios. We applied our proposed method to a study of the effect of interleukin-1 beta (IL-1β) protein expression on the 90-day survival following sepsis and found that overly expressed IL-1β is likely to increase mortality.

摘要

在具备基因型以及基因或蛋白质表达谱的基因组研究中,可以通过将基因变异用作工具变量(IVs)来推断基因或蛋白质对临床结局的因果效应。引入工具变量的目的是消除可能混淆生物标志物与结局之间关系的未观察因素的影响。在工具变量框架下进行有效的推断需要成对关联和路径排他性。在这些假设中,工具变量与表达的关联需要很强,才能使因果效应估计无偏。然而,少数单核苷酸多态性(SNP)通常只能对基因或蛋白质表达的变异性提供有限的解释,只能作为弱工具变量。在本研究中,我们建议用单倍型取代单核苷酸多态性作为工具变量,以增强变异与表达的关联,从而改善对表达的因果效应推断。在经典的两阶段程序中,我们开发了一种单倍型回归模型,并结合模型选择程序来识别最佳工具。通过模拟评估了新方法的性能,并与使用观察到的多个单核苷酸多态性的工具变量方法进行了比较。我们的结果表明,在基因型完整或缺失的情况下,与仅使用观察到的单核苷酸多态性相比,使用单倍型检测基因或蛋白质对结局的因果效应的能力有所提高。我们将所提出的方法应用于一项关于白细胞介素-1β(IL-1β)蛋白表达对脓毒症后90天生存率影响的研究,发现IL-1β过度表达可能会增加死亡率。

相似文献

引用本文的文献

7
On the use of kernel machines for Mendelian randomization.关于核机器在孟德尔随机化中的应用。
Quant Biol. 2017 Dec;5(4):368-379. doi: 10.1007/s40484-017-0124-3. Epub 2017 Nov 20.

本文引用的文献

2
The role of regulatory variation in complex traits and disease.调控变异在复杂性状和疾病中的作用。
Nat Rev Genet. 2015 Apr;16(4):197-212. doi: 10.1038/nrg3891. Epub 2015 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验