Pelikan Claus, Herbold Craig W, Hausmann Bela, Müller Albert L, Pester Michael, Loy Alexander
Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.
Austrian Polar Research Institute, Vienna, Austria.
Environ Microbiol. 2016 Sep;18(9):2994-3009. doi: 10.1111/1462-2920.13139. Epub 2016 Jan 26.
Genes encoding dissimilatory sulfite reductase (DsrAB) are commonly used as diagnostic markers in ecological studies of sulfite- and sulfate-reducing microorganisms. Here, we developed new high-coverage primer sets for generation of reductive bacterial-type dsrA and dsrB polymerase chain reaction (PCR) products for highly parallel amplicon sequencing and a bioinformatics workflow for processing and taxonomic classification of short dsrA and dsrB reads. We employed two diverse mock communities that consisted of 45 or 90 known dsrAB sequences derived from environmental clones to precisely evaluate the performance of individual steps of our amplicon sequencing approach on the Illumina MiSeq platform. Although PCR cycle number, gene-specific primer mismatches and stringent filtering for high-quality sequences had notable effects on the observed dsrA and dsrB community structures, recovery of most mock community sequences was generally proportional to their relative input abundances. Successful dsrA and dsrB diversity analysis in selected environmental samples further proved that the multiplex amplicon sequencing approach is adequate for monitoring spatial distribution and temporal abundance dynamics of dsrAB-containing microorganisms. Although tested for reductive bacterial-type dsrAB, this method is readily applicable for oxidative-type dsrAB of sulfur-oxidizing bacteria and also provides guidance for processing short amplicon reads of other functional genes.
编码异化亚硫酸盐还原酶(DsrAB)的基因通常在亚硫酸盐和硫酸盐还原微生物的生态学研究中用作诊断标记。在此,我们开发了新的高覆盖度引物组,用于生成用于高度平行扩增子测序的还原性细菌型dsrA和dsrB聚合酶链反应(PCR)产物,以及用于处理短dsrA和dsrB读数并进行分类学分类的生物信息学工作流程。我们使用了两个不同的模拟群落,它们由45个或90个源自环境克隆的已知dsrAB序列组成,以精确评估我们在Illumina MiSeq平台上的扩增子测序方法各个步骤的性能。尽管PCR循环数、基因特异性引物错配以及对高质量序列的严格过滤对观察到的dsrA和dsrB群落结构有显著影响,但大多数模拟群落序列的回收率通常与其相对输入丰度成正比。在选定的环境样品中成功进行dsrA和dsrB多样性分析进一步证明,多重扩增子测序方法足以监测含dsrAB微生物的空间分布和时间丰度动态。尽管该方法是针对还原性细菌型dsrAB进行测试的,但它很容易适用于硫氧化细菌的氧化型dsrAB,并且还为处理其他功能基因的短扩增子读数提供了指导。