Showalter Scott A, Brüschweiler Rafael
Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306.
J Chem Theory Comput. 2007 May;3(3):961-75. doi: 10.1021/ct7000045.
Biological function of biomolecules is accompanied by a wide range of motional behavior. Accurate modeling of dynamics by molecular dynamics (MD) computer simulations is therefore a useful approach toward the understanding of biomolecular function. NMR spin relaxation measurements provide rigorous benchmarks for assessing important aspects of MD simulations, such as the amount and time scales of conformational space sampling, which are intimately related to the underlying molecular mechanics force field. Until recently, most simulations produced trajectories that exhibited too much dynamics particularly in flexible loop regions. Recent modifications made to the backbone φ and ψ torsion angle potentials of the AMBER and CHARMM force fields indicate that these changes produce more realistic molecular dynamics behavior. To assess the consequences of these changes, we performed a series of 5-20 ns molecular dynamics trajectories of human ubiquitin using the AMBER99 and AMBER99SB force fields for different conditions and water models and compare the results with NMR experimental backbone N-H S(2) order parameters. A quantitative analysis of the trajectories shows significantly improved agreement with experimental NMR data for the AMBER99SB force field as compared to AMBER99. Because NMR spin relaxation data (T1, T2, NOE) reflect the combined effects of spatial and temporal fluctuations of bond vectors, it is found that comparison of experimental and back-calculated NMR spin-relaxation data provides a more objective way of assessing the quality of the trajectory than order parameters alone. Analysis of a key mobile β-hairpin in ubiquitin demonstrates that the dynamics of mobile sites are not only reduced by the modified force field, but the extent of motional correlations between amino acids is also markedly diminished.
生物分子的生物学功能伴随着广泛的运动行为。因此,通过分子动力学(MD)计算机模拟对动力学进行精确建模是理解生物分子功能的一种有用方法。核磁共振自旋弛豫测量为评估MD模拟的重要方面提供了严格的基准,例如构象空间采样的数量和时间尺度,这些与潜在的分子力学力场密切相关。直到最近,大多数模拟产生的轨迹表现出过多的动力学,特别是在柔性环区域。最近对AMBER和CHARMM力场的主链φ和ψ扭转角势进行的修改表明,这些变化产生了更现实的分子动力学行为。为了评估这些变化的后果,我们使用AMBER99和AMBER99SB力场针对不同条件和水模型对人泛素进行了一系列5 - 20纳秒的分子动力学轨迹模拟,并将结果与核磁共振实验的主链N - H S(2)序参数进行比较。对轨迹的定量分析表明,与AMBER99相比,AMBER99SB力场与实验核磁共振数据的一致性有了显著改善。由于核磁共振自旋弛豫数据(T1、T2、NOE)反映了键向量的空间和时间波动的综合影响,发现将实验和反向计算的核磁共振自旋弛豫数据进行比较,比单独使用序参数提供了一种更客观的评估轨迹质量的方法。对泛素中一个关键的可移动β - 发夹的分析表明,可移动位点的动力学不仅因修改后的力场而降低,而且氨基酸之间的运动相关性程度也明显减弱。