Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States.
Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States.
J Phys Chem B. 2024 Nov 7;128(44):10813-10822. doi: 10.1021/acs.jpcb.4c04895. Epub 2024 Oct 28.
The Lipari-Szabo generalized order parameter probes the picosecond to nanosecond time scale motions of a protein and is useful for rationalizing a multitude of biological processes such as protein recognition and ligand binding. Although these fast motions are an important and intrinsic property of proteins, it remains unclear what simulation conditions are most suitable to reproduce methyl symmetry axis side chain order parameter data () from molecular dynamics simulations. In this study, we show that, while tends to converge within tens of nanoseconds, it is essential to run 10 to 20 replicas starting from configurations close to the experimental structure to obtain the best agreement with experimental values. Additionally, in a comparison of force fields, AMBER ff14SB outperforms CHARMM36m in accurately capturing these fast time scale motions, and we suggest that the origin of this performance gap is likely attributed to differences in side chain torsional parametrization and not due to differences in the global protein conformations sampled by the force fields. This study provides insight into obtaining accurate and reproducible values from molecular simulations and underscores the necessity of using replica simulations to compute equilibrium properties.
拉皮里-绍博广义序参数探测蛋白质的皮秒到纳秒时间尺度运动,可用于合理推断多种生物学过程,如蛋白质识别和配体结合。尽管这些快速运动是蛋白质的重要内在特性,但仍不清楚模拟条件最适合再现分子动力学模拟中的甲基对称轴侧链序参数数据 ()。在这项研究中,我们表明,虽然 倾向于在几十纳秒内收敛,但从接近实验结构的构象开始运行 10 到 20 个副本对于获得与实验 值的最佳一致性至关重要。此外,在对力场的比较中,AMBER ff14SB 比 CHARMM36m 更能准确捕捉这些快速时间尺度运动,我们认为这种性能差距的原因可能归因于侧链扭转参数化的差异,而不是由于力场采样的全局蛋白质构象的差异。这项研究提供了从分子模拟中获得准确和可重复的 值的见解,并强调了使用副本模拟计算平衡性质的必要性。