Suppr超能文献

分子动力学模拟中 Lipari-Szabo 序参数的准确性和可重现性

Accuracy and Reproducibility of Lipari-Szabo Order Parameters From Molecular Dynamics.

机构信息

Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States.

Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48103, United States.

出版信息

J Phys Chem B. 2024 Nov 7;128(44):10813-10822. doi: 10.1021/acs.jpcb.4c04895. Epub 2024 Oct 28.

Abstract

The Lipari-Szabo generalized order parameter probes the picosecond to nanosecond time scale motions of a protein and is useful for rationalizing a multitude of biological processes such as protein recognition and ligand binding. Although these fast motions are an important and intrinsic property of proteins, it remains unclear what simulation conditions are most suitable to reproduce methyl symmetry axis side chain order parameter data () from molecular dynamics simulations. In this study, we show that, while tends to converge within tens of nanoseconds, it is essential to run 10 to 20 replicas starting from configurations close to the experimental structure to obtain the best agreement with experimental values. Additionally, in a comparison of force fields, AMBER ff14SB outperforms CHARMM36m in accurately capturing these fast time scale motions, and we suggest that the origin of this performance gap is likely attributed to differences in side chain torsional parametrization and not due to differences in the global protein conformations sampled by the force fields. This study provides insight into obtaining accurate and reproducible values from molecular simulations and underscores the necessity of using replica simulations to compute equilibrium properties.

摘要

拉皮里-绍博广义序参数探测蛋白质的皮秒到纳秒时间尺度运动,可用于合理推断多种生物学过程,如蛋白质识别和配体结合。尽管这些快速运动是蛋白质的重要内在特性,但仍不清楚模拟条件最适合再现分子动力学模拟中的甲基对称轴侧链序参数数据 ()。在这项研究中,我们表明,虽然 倾向于在几十纳秒内收敛,但从接近实验结构的构象开始运行 10 到 20 个副本对于获得与实验 值的最佳一致性至关重要。此外,在对力场的比较中,AMBER ff14SB 比 CHARMM36m 更能准确捕捉这些快速时间尺度运动,我们认为这种性能差距的原因可能归因于侧链扭转参数化的差异,而不是由于力场采样的全局蛋白质构象的差异。这项研究提供了从分子模拟中获得准确和可重复的 值的见解,并强调了使用副本模拟计算平衡性质的必要性。

相似文献

本文引用的文献

1
Do All Paths Lead to Rome? How Reliable is Umbrella Sampling Along a Single Path?条条大路通罗马?单路径伞形采样的可靠性如何?
J Chem Theory Comput. 2024 Aug 13;20(15):6674-6686. doi: 10.1021/acs.jctc.4c00134. Epub 2024 Jul 22.
3
Ensemble-Based Approaches Ensure Reliability and Reproducibility.基于集成的方法可确保可靠性和可重复性。
J Chem Inf Model. 2023 Nov 27;63(22):6959-6963. doi: 10.1021/acs.jcim.3c01654. Epub 2023 Nov 15.
4
Fitting Force Field Parameters to NMR Relaxation Data.拟合力场参数到 NMR 弛豫数据。
J Chem Theory Comput. 2023 Jun 27;19(12):3741-3751. doi: 10.1021/acs.jctc.3c00174. Epub 2023 Jun 5.
5
pyCHARMM: Embedding CHARMM Functionality in a Python Framework.pyCHARMM:在 Python 框架中嵌入 CHARMM 功能。
J Chem Theory Comput. 2023 Jun 27;19(12):3752-3762. doi: 10.1021/acs.jctc.3c00364. Epub 2023 Jun 2.
6
Guidelines for Reporting Molecular Dynamics Simulations in JCIM Publications.《JCIM出版物中分子动力学模拟报告指南》
J Chem Inf Model. 2023 Jun 12;63(11):3227-3229. doi: 10.1021/acs.jcim.3c00599. Epub 2023 May 16.
7
Deep mining of the protein energy landscape.蛋白质能量景观的深度挖掘。
Struct Dyn. 2023 Apr 27;10(2):020901. doi: 10.1063/4.0000180. eCollection 2023 Mar.
8
Pressure, motion, and conformational entropy in molecular recognition by proteins.蛋白质分子识别中的压力、运动和构象熵。
Biophys Rep (N Y). 2022 Dec 28;3(1):100098. doi: 10.1016/j.bpr.2022.100098. eCollection 2023 Mar 8.
10
How Much Entropy Is Contained in NMR Relaxation Parameters?NMR 弛豫参数中包含多少熵?
J Phys Chem B. 2022 Jan 13;126(1):54-68. doi: 10.1021/acs.jpcb.1c07786. Epub 2021 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验