Howard Hughes Medical Institute, Kansas City, MO 64110, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Cell Rep. 2015 Dec 15;13(10):2232-43. doi: 10.1016/j.celrep.2015.10.075. Epub 2015 Nov 25.
The non-coding RNA subunit of telomerase provides the template for telomerase activity. In diverse fungi, 3' end processing of telomerase RNA involves a single cleavage by the spliceosome. Here, we examine how human telomerase RNA (hTR) primary transcripts are processed into the mature form of precisely 451 nt. We find that the splicing inhibitor isoginkgetin mimics the effects of RNA exosome inhibition and causes accumulation of long hTR transcripts. Depletion of exosome components and accessory factors reveals functions for the cap binding complex (CBC) and the nuclear exosome targeting (NEXT) complex in hTR turnover. Whereas longer transcripts are predominantly degraded, shorter precursor RNAs are oligo-adenylated by TRF4-2 and either processed by poly(A)-specific ribonuclease (PARN) or degraded by the exosome. Our results reveal that hTR biogenesis involves a kinetic competition between RNA processing and degradation and suggest treatment options for telomerase insufficiency disorders.
端粒酶的非编码 RNA 亚基为端粒酶活性提供模板。在不同的真菌中,端粒酶 RNA 的 3'末端加工涉及剪接体的单次切割。在这里,我们研究了人类端粒酶 RNA (hTR) 初级转录物如何被加工成精确的 451 个核苷酸的成熟形式。我们发现, splicing 抑制剂异银杏素模拟了 RNA 外切酶抑制的作用,并导致长 hTR 转录本的积累。外切体成分和辅助因子的耗竭揭示了帽结合复合物 (CBC) 和核外切体靶向 (NEXT) 复合物在 hTR 周转中的作用。虽然较长的转录本主要被降解,但较短的前体 RNA 被 TRF4-2 寡聚腺苷酸化,并通过多聚(A)特异性核糖核酸酶 (PARN) 进行加工或被外切体降解。我们的结果表明,hTR 生物发生涉及 RNA 加工和降解之间的动力学竞争,并为端粒酶不足疾病提供了治疗选择。