Xu Qifang, Malecka Kimberly L, Fink Lauren, Jordan E Joseph, Duffy Erin, Kolander Samuel, Peterson Jeffrey R, Dunbrack Roland L
Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Sci Signal. 2015 Dec 1;8(405):rs13. doi: 10.1126/scisignal.aaa6711.
Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an "autophosphorylation complex." We developed and applied a structural bioinformatics method to identify all such autophosphorylation complexes in x-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which five complexes had not previously been described in the publications describing the crystal structures. These five complexes consist of tyrosine residues in the N-terminal juxtamembrane regions of colony-stimulating factor 1 receptor (CSF1R, Tyr(561)) and ephrin receptor A2 (EPHA2, Tyr(594)), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr(394)) and insulin-like growth factor 1 receptor (IGF1R, Tyr(1166)), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser(142)). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore, we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro(447) to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets.
蛋白激酶自磷酸化是细胞信号通路中一种常见的调节机制。几种同聚体蛋白激酶复合物的晶体结构显示,一个激酶单体的丝氨酸、苏氨酸或酪氨酸自磷酸化位点位于另一个单体的活性位点内,我们将这种结构复合物称为“自磷酸化复合物”。我们开发并应用了一种结构生物信息学方法,以在蛋白质数据库(PDB)的X射线晶体学结构中识别所有此类自磷酸化复合物。我们在PDB中识别出15个自磷酸化复合物,其中5个复合物在描述晶体结构的出版物中未曾被描述过。这5个复合物包括集落刺激因子1受体(CSF1R,Tyr(561))和 Ephrin 受体A2(EPHA2,Tyr(594))N端近膜区的酪氨酸残基、SRC激酶家族成员LCK(Tyr(394))和胰岛素样生长因子1受体(IGF1R,Tyr(1166))激活环中的酪氨酸残基,以及类CDC激酶2(CLK2,Ser(142))核定位信号区的一个丝氨酸。复合物界面中的突变可能会改变自磷酸化活性并导致疾病;因此,我们对LCK自磷酸化复合物界面中的残基进行了突变,发现两个突变损害了自磷酸化(T445V和N446A),而将Pro(447)突变为Ala、Gly或Leu则增加了自磷酸化。所识别的自磷酸化位点在许多激酶中是保守的,这表明通过同源性,这些复合物可能为与药物靶点相关的激酶自磷酸化复合物界面提供见解。