Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA.
Department of Chemistry, Temple University, Philadelphia, PA, USA.
Nat Commun. 2024 Aug 2;15(1):6545. doi: 10.1038/s41467-024-50812-0.
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory folded conformation, due to intrinsic sequence effects. Here we investigate the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a thermodynamic cycle involving many (n = 108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation DFG-out Activation Loop Folded, is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
蛋白激酶是分子机器,具有丰富的序列变异,将其分为两个主要的进化分支 - 酪氨酸激酶 (TKs) 和丝氨酸/苏氨酸激酶 (STKs)。我们之前使用序列协变 Potts 统计能量模型得出结论,由于内在序列效应,TK 催化结构域比 STKs 更有可能采用无活性构象,此时激活环处于自动抑制折叠构象。在这里,我们通过将基于序列的模型与基于结构的分子动力学 (MD) 相结合,来研究这种现象的结构基础,以确定突变对活性和无活性构象之间自由能差异的影响,使用涉及许多(n = 108)蛋白-突变自由能扰动 (FEP) 模拟的热力学循环,分别在活性和无活性构象中进行。基于序列和结构的结果是一致的,并支持以下假设,即无活性构象 DFG-out Activation Loop Folded 是一种功能性调节状态,在其进化过程中,TKs 相对于 STKs 积累了激活环和催化环中的残基取代,从而促进了不同的底物结合模式,以及在 cis 中进行了额外的调节模式,从而在 TKs 中得到了稳定。