School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore 639798, Singapore.
Center for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 117543, Singapore.
ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27502-10. doi: 10.1021/acsami.5b09695. Epub 2015 Dec 2.
Low-cost, one-step, and hydrothermal synthesized 3D reduced graphene oxide hydrogel (RGOH) is exploited to fabricate a high performance NO2 and NH3 sensor with an integrated microheater. The sensor can experimentally detect NO2 and NH3 at low concentrations of 200 ppb and 20 ppm, respectively, at room temperature. In addition to accelerating the signal recovery rate by elevating the local silicon substrate temperature, the microheater is exploited for the first time to improve the selectivity of NO2 sensing. Specifically, the sensor response from NH3 can be effectively suppressed by a locally increased temperature, while the sensitivity of detecting NO2 is not significantly affected. This leads to good discrimination between NO2 and NH3. This strategy paves a new avenue to improve the selectivity of gas sensing by using the microheater to raise substrate temperature.
低成本、一步法、水热合成的三维还原氧化石墨烯水凝胶 (RGOH) 被用于制造具有集成微加热器的高性能 NO2 和 NH3 传感器。该传感器可以在室温下分别以低至 200 ppb 和 20 ppm 的浓度对 NO2 和 NH3 进行实验检测。除了通过提高局部硅衬底温度来加速信号恢复速率外,微加热器还首次被用于提高 NO2 传感的选择性。具体而言,局部升高温度可以有效抑制来自 NH3 的传感器响应,而对检测 NO2 的灵敏度没有明显影响。这导致了对 NO2 和 NH3 的良好区分。该策略为通过使用微加热器升高衬底温度来提高气体传感的选择性开辟了新途径。