Suppr超能文献

用于痕量检测爆炸物的独立式薄膜传感器。

Free-standing, thin-film sensors for the trace detection of explosives.

作者信息

Ricci Peter P, Gregory Otto J

机构信息

Sensors and Surface Technology Partnership, Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue Suite 360, Kingston, RI, 02881, USA.

出版信息

Sci Rep. 2021 Mar 23;11(1):6623. doi: 10.1038/s41598-021-86077-6.

Abstract

In a world focused on the development of cybersecurity, many densely populated areas and transportation hubs are still susceptible to terrorist attacks via improvised explosive devices (IEDs). These devices frequently employ a combination of peroxide based explosives as well as nitramines, nitrates, and nitroaromatics. Detection of these explosives can be challenging due to varying chemical composition and the extremely low vapor pressures exhibited by some explosive compounds. No electronic trace detection system currently exists that is capable of continuously monitoring both peroxide based explosives and certain nitrogen based explosives, or their precursors, in the vapor phase. Recently, we developed a thermodynamic sensor that can detect a multitude of explosives in the vapor phase at the parts-per-trillion (ppt) level. The sensors rely on the catalytic decomposition of the explosive and specific oxidation-reduction reactions between the energetic molecule and metal oxide catalyst; i.e. the heat effects associated with catalytic decomposition and redox reactions between the decomposition products and catalyst are measured. Improved sensor response and selectivity were achieved by fabricating free-standing, ultrathin film (1 µm thick) microheater sensors for this purpose. The fabrication method used here relies on the interdiffusion mechanics between a copper (Cu) adhesion layer and the palladium (Pd) microheater sensor. A detailed description of the fabrication process to produce a free-standing 1 µm thick sensor is presented.

摘要

在一个专注于网络安全发展的世界里,许多人口密集地区和交通枢纽仍然容易受到简易爆炸装置(IED)的恐怖袭击。这些装置经常使用过氧化物基炸药以及硝胺、硝酸盐和硝基芳烃的组合。由于化学成分各异以及某些爆炸化合物的蒸气压极低,检测这些炸药可能具有挑战性。目前不存在能够在气相中连续监测过氧化物基炸药和某些氮基炸药或其前体的电子痕量检测系统。最近,我们开发了一种热力学传感器,它能够在万亿分之一(ppt)水平检测气相中的多种炸药。这些传感器依靠炸药的催化分解以及高能分子与金属氧化物催化剂之间的特定氧化还原反应;即测量与催化分解以及分解产物和催化剂之间的氧化还原反应相关的热效应。为此,通过制造独立的超薄薄膜(1微米厚)微加热器传感器实现了改进的传感器响应和选择性。这里使用的制造方法依赖于铜(Cu)粘附层和钯(Pd)微加热器传感器之间的相互扩散机制。本文详细介绍了制造独立的1微米厚传感器的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82d3/7987993/6e6781e6504d/41598_2021_86077_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验