Suppr超能文献

基于 3D 石墨烯框架的有毒气体传感器的最新进展。

Recent Progress of Toxic Gas Sensors Based on 3D Graphene Frameworks.

机构信息

College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2021 May 13;21(10):3386. doi: 10.3390/s21103386.

Abstract

Air pollution is becoming an increasingly important global issue. Toxic gases such as ammonia, nitrogen dioxide, and volatile organic compounds (VOCs) like phenol are very common air pollutants. To date, various sensing methods have been proposed to detect these toxic gases. Researchers are trying their best to build sensors with the lowest detection limit, the highest sensitivity, and the best selectivity. As a 2D material, graphene is very sensitive to many gases and so can be used for gas sensors. Recent studies have shown that graphene with a 3D structure can increase the gas sensitivity of the sensors. The limit of detection (LOD) of the sensors can be upgraded from ppm level to several ppb level. In this review, the recent progress of the gas sensors based on 3D graphene frameworks in the detection of harmful gases is summarized and discussed.

摘要

空气污染正成为一个日益重要的全球性问题。氨、二氧化氮和挥发性有机化合物(VOC)等有毒气体如苯酚是非常常见的空气污染物。迄今为止,已经提出了各种传感方法来检测这些有毒气体。研究人员正在尽最大努力制造具有最低检测限、最高灵敏度和最佳选择性的传感器。作为一种二维材料,石墨烯对许多气体非常敏感,因此可用于气体传感器。最近的研究表明,具有 3D 结构的石墨烯可以提高传感器的气体灵敏度。传感器的检测限(LOD)可以从 ppm 级升级到几个 ppb 级。在本文综述中,总结并讨论了基于 3D 石墨烯框架的气体传感器在有害气体检测方面的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f98/8152072/59d54d0a944b/sensors-21-03386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验