Černý Radovan, Schouwink Pascal
Laboratory of Crystallography, Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2015 Dec 1;71(Pt 6):619-40. doi: 10.1107/S2052520615018508.
The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.
针对无机同配金属硼氢化物的晶体结构,依据无机数据库(如Pearson晶体数据[Villars & Cenzual(2015年)。Pearson晶体数据。无机化合物晶体结构数据库,2014/2015年版,ASM国际,美国俄亥俄州材料园])中金属氧化物的结构原型进行了分析。确定了阳离子和硼氢化物阴离子周围的配位多面体,它们构成了各种离子堆积框架和变体(包括复杂阴离子以及晶体中中性分子的堆积)下金属硼氢化物化学结构系统分类的基础。通过使用TOPOS程序[Blatov(2006年)。IUCr CompComm. Newsl. 7, 4 - 38]进行拓扑分析来确定基础网络。研究发现,离子晶体的鲍林规则适用于所有非分子硼氢化物晶体结构,并且后者通常可以通过对密堆积阴离子晶格(面心立方和六方密堆积)进行简单变形得到,即部分去除阴离子并填充四面体或八面体位置。由于BH4(-)阴离子的几何和电子因素(四面体形状、极化率),金属硼氢化物相对于氧化物更容易偏离理想的紧密堆积。这篇关于硼氢化物晶体化学及其与氧化物相似性的综述有助于材料工程师设计新材料,有助于合成化学家寻找有前景的待制备化合物,也有助于材料科学家理解新型材料的性质。