Suppr超能文献

使用连续小波变换的自动睡眠纺锤波检测与遗传影响估计

Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform.

作者信息

Adamczyk Marek, Genzel Lisa, Dresler Martin, Steiger Axel, Friess Elisabeth

机构信息

Max Planck Institute of Psychiatry Munich, Germany.

Centre for Cognitive and Neural Systems, University of Edinburgh Edinburgh, UK.

出版信息

Front Hum Neurosci. 2015 Nov 19;9:624. doi: 10.3389/fnhum.2015.00624. eCollection 2015.

Abstract

Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep.

摘要

越来越多的证据表明睡眠纺锤波在神经可塑性中发挥作用,这使得人们对这些非快速眼动(NREM)睡眠振荡越来越感兴趣。据推测,快速和慢速纺锤波在记忆处理中可能发挥不同的作用。在此,我们提出一种新的睡眠纺锤波检测算法,该算法利用连续小波变换(CWT)以及对慢速和快速纺锤波频率范围进行单独调整。使用了10名受试者的18次午睡记录来验证该算法。我们的方法与人工评分者以及市售的SIESTA纺锤波检测器进行了比较。对于验证集,在睡眠第2阶段使用kappa系数测量,我们的检测器与人工评分者之间的平均一致性为0.45,而我们的检测器与SIESTA算法之间的平均一致性为0.62。我们的算法还应用于先前用SIESTA检测器分析过的与睡眠相关的记忆巩固数据,并证实了先前关于纺锤波密度与陈述性记忆巩固之间存在显著相关性的发现。然后,我们将我们的方法应用于一项对同卵(MZ)和异卵(DZ)双胞胎的研究,以检验慢速和快速睡眠纺锤波参数的遗传成分。我们的分析揭示了对所有慢速纺锤波参数的方差有很强的遗传影响,对快速纺锤波的遗传影响较弱,并且对睡眠第2阶段的快速纺锤波密度和数量没有影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验