Suppr超能文献

固-水界面上的病毒:驱动吸附作用的相互作用的系统评估。

Viruses at Solid-Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption.

机构信息

Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne, CH-1015, Switzerland.

Applied Physics Laboratory, Johns Hopkins University , Laurel, Maryland 20723, United States.

出版信息

Environ Sci Technol. 2016 Jan 19;50(2):732-43. doi: 10.1021/acs.est.5b04644. Epub 2015 Dec 22.

Abstract

Adsorption to solid-water interfaces is a major process governing the fate of waterborne viruses in natural and engineered systems. The relative contributions of different interaction forces to adsorption and their dependence on the physicochemical properties of the viruses remain, however, only poorly understood. Herein, we systematically studied the adsorption of four bacteriophages (MS2, fr, GA, and Qβ) to five model surfaces with varying surface chemistries and to three dissolved organic matter adlayers, as a function of solution pH and ionic strength, using quartz crystal microbalance with dissipation monitoring. The viruses were selected to have similar sizes and shapes but different surface charges, polarities, and topographies, as identified by modeling the distributions of amino acids in the virus capsids. Virus-sorbent interactions were governed by long-ranged electrostatics and favorable contributions from the hydrophobic effect, and shorter-ranged van der Waals interactions were of secondary importance. Steric effects depended on the topographic irregularities on both the virus and sorbent surfaces. Differences in the adsorption characteristics of the tested viruses were successfully linked to differences in their capsid surface properties. Besides identifying the major interaction forces, this work highlights the potential of computable virus surface charge and polarity descriptors to predict virus adsorption to solid-water interfaces.

摘要

在自然和工程系统中,固体-水界面的吸附是控制水载病毒命运的主要过程。然而,不同相互作用力对吸附的相对贡献及其对病毒物理化学性质的依赖性仍知之甚少。在此,我们使用石英晶体微天平(QCM-D)监测,系统地研究了四种噬菌体(MS2、fr、GA 和 Qβ)在不同表面化学性质的五种模型表面和三种溶解有机质吸附层上的吸附行为,研究了其与溶液 pH 值和离子强度的关系。选择这些病毒的原因是它们具有相似的大小和形状,但表面电荷、极性和形貌不同,这是通过对病毒衣壳中氨基酸分布进行建模来确定的。病毒-吸附剂相互作用受长程静电作用和疏水效应的有利贡献控制,而短程范德华相互作用则处于次要地位。空间位阻效应取决于病毒和吸附剂表面的形貌不规则性。测试病毒的吸附特性差异与其衣壳表面特性差异成功相关。除了确定主要相互作用力外,这项工作还突出了可计算的病毒表面电荷和极性描述符在预测病毒与固-水界面吸附方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验