Watermeyer Jean M, Hale Victoria L, Hackett Fiona, Clare Daniel K, Cutts Erin E, Vakonakis Ioannis, Fleck Roland A, Blackman Michael J, Saibil Helen R
Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom;
The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom;
Blood. 2016 Jan 21;127(3):343-51. doi: 10.1182/blood-2015-10-674002. Epub 2015 Dec 4.
Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.
恶性疟原虫疟疾的许多毒力是由受感染红细胞的细胞黏附引起的,这种黏附通过阻止在脾脏中的清除来促进寄生虫存活。黏附由称为“结节”的膜突起介导,其形成取决于寄生虫衍生的、与结节相关的富含组氨酸蛋白(KAHRP)。在流动条件下,细胞黏附需要结节,并且它们包含KAHRP和寄生虫衍生的红细胞膜蛋白PfEMP1。利用电子断层扫描技术,我们研究了恶性疟原虫3D7裂殖体去污剂不溶性骨架中结节的三维结构。我们描述了一种高度有组织的结节骨架,它由一个螺旋结构组成,该螺旋结构被结节膜下方的电子致密层覆盖。这个结节骨架通过多个连接与红细胞细胞骨架相连。我们使用免疫电子显微镜(EM)在这些结构中定位KAHRP。通过高分辨率冷冻断裂扫描EM观察到的结节中膜蛋白的排列与周围红细胞膜中的排列不同,其顶端的结构可能代表黏附位点。因此,恶性疟原虫感染中的红细胞结节在膜的特定区域下方包含一个高度有组织的骨架结构。我们提出,螺旋和致密涂层组织了结节中的细胞黏附结构,并将它们锚定到红细胞细胞骨架中。结节的高密度及其广泛的机械连接为受感染细胞中细胞骨架的硬化以及黏附细胞所经历的剪切力向细胞骨架的传递提供了解释。