Suppr超能文献

膜重塑 ESCRT 途径的分子机制。

Molecular mechanisms of the membrane sculpting ESCRT pathway.

机构信息

Weill Institute for Cell and Molecular Biology, Cornell University, Weill Hall, Ithaca, New York 14853, USA.

出版信息

Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a016766. doi: 10.1101/cshperspect.a016766.

Abstract

The endosomal sorting complexes required for transport (ESCRT) drive multivesicular body (MVB) biogenesis and cytokinetic abscission. Originally identified through genetics and cell biology, more recent work has begun to elucidate the molecular mechanisms of ESCRT-mediated membrane remodeling, with special focus on the ESCRT-III complex. In particular, several light and electron microscopic studies provide high-resolution imaging of ESCRT-III rings and spirals that purportedly drive MVB morphogenesis and abscission. These studies highlight unifying principles to ESCRT-III function, in particular: (1) the ordered assembly of the ESCRT-III monomers into a heteropolymer, (2) ESCRT-III as a dynamic complex, and (3) the role of the AAA ATPase Vps4 as a contributing factor in membrane scission. Mechanistic comparisons of ESCRT-III function in MVB morphogenesis and cytokinesis suggest common mechanisms in membrane remodeling.

摘要

内体分选复合物(ESCRT)对于运输是必需的,它可以驱动多泡体(MVB)的生物发生和胞质分裂。最初通过遗传学和细胞生物学鉴定,最近的工作开始阐明 ESCRT 介导的膜重塑的分子机制,特别关注 ESCRT-III 复合物。特别是,几项光和电子显微镜研究提供了 ESCRT-III 环和螺旋的高分辨率成像,据称这些结构可以驱动 MVB 的形态发生和分裂。这些研究强调了 ESCRT-III 功能的统一原则,特别是:(1)ESCRT-III 单体有序组装成杂聚物,(2)ESCRT-III 作为一个动态复合物,以及(3)AAA ATPase Vps4 作为膜分裂的一个贡献因素的作用。ESCRT-III 在 MVB 形态发生和胞质分裂中的功能的机制比较表明了膜重塑中的共同机制。

相似文献

1
Molecular mechanisms of the membrane sculpting ESCRT pathway.
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a016766. doi: 10.1101/cshperspect.a016766.
2
Regulation of Vps4 during MVB sorting and cytokinesis.
Traffic. 2011 Oct;12(10):1298-305. doi: 10.1111/j.1600-0854.2011.01230.x. Epub 2011 Jul 7.
3
Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4846-51. doi: 10.1073/pnas.1102714108. Epub 2011 Mar 7.
4
Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation.
J Cell Biol. 2014 Apr 14;205(1):33-49. doi: 10.1083/jcb.201310114. Epub 2014 Apr 7.
5
ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission.
FEBS J. 2016 Sep;283(18):3288-302. doi: 10.1111/febs.13688. Epub 2016 Mar 8.
6
7
A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission.
Curr Biol. 2019 Jul 8;29(13):2174-2182.e7. doi: 10.1016/j.cub.2019.05.050. Epub 2019 Jun 13.
8
Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery.
Trends Biochem Sci. 2017 Jan;42(1):42-56. doi: 10.1016/j.tibs.2016.08.016. Epub 2016 Sep 23.
9
Bro1 stimulates Vps4 to promote intralumenal vesicle formation during multivesicular body biogenesis.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202102070. Epub 2021 Jun 23.
10
Dynamics of ESCRT proteins.
Cell Mol Life Sci. 2012 Dec;69(24):4121-33. doi: 10.1007/s00018-012-1035-0. Epub 2012 Jun 6.

引用本文的文献

2
The expanding repertoire of ESCRT functions in cell biology and disease.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-08950-y.
3
Native and Engineered Extracellular Vesicles for the Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome.
Small Sci. 2025 Feb 26;5(6):2400606. doi: 10.1002/smsc.202400606. eCollection 2025 Jun.
4
The biology of exosomes and exosomal non-coding RNAs in cardiovascular diseases.
Front Pharmacol. 2025 May 26;16:1529375. doi: 10.3389/fphar.2025.1529375. eCollection 2025.
5
Extracellular vesicles as vital players in drug delivery: a focus on clinical disease treatment.
Front Bioeng Biotechnol. 2025 May 14;13:1600227. doi: 10.3389/fbioe.2025.1600227. eCollection 2025.
8
Intersection of GPCR trafficking and cAMP signaling at endomembranes.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202409027. Epub 2025 Mar 25.
9
Roles for Exosomes in the Pathogenesis, Drug Delivery and Therapy of Psoriasis.
Pharmaceutics. 2025 Jan 2;17(1):51. doi: 10.3390/pharmaceutics17010051.
10
Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes.
Stem Cell Res Ther. 2024 Dec 18;15(1):474. doi: 10.1186/s13287-024-04087-3.

本文引用的文献

1
Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB.
Curr Biol. 2013 Mar 18;23(6):453-61. doi: 10.1016/j.cub.2013.02.033. Epub 2013 Mar 7.
2
ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding.
Dev Cell. 2012 Dec 11;23(6):1247-54. doi: 10.1016/j.devcel.2012.10.023. Epub 2012 Nov 29.
3
Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.
PLoS Comput Biol. 2012;8(10):e1002736. doi: 10.1371/journal.pcbi.1002736. Epub 2012 Oct 18.
4
5
ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17424-9. doi: 10.1073/pnas.1206839109. Epub 2012 Oct 8.
6
MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis.
Mol Biol Cell. 2012 Nov;23(22):4347-61. doi: 10.1091/mbc.E12-04-0292. Epub 2012 Sep 26.
7
FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis.
Nat Cell Biol. 2012 Oct;14(10):1068-78. doi: 10.1038/ncb2577. Epub 2012 Sep 23.
8
Membrane bending by protein-protein crowding.
Nat Cell Biol. 2012 Sep;14(9):944-9. doi: 10.1038/ncb2561. Epub 2012 Aug 19.
9
Molecular control of animal cell cytokinesis.
Nat Cell Biol. 2012 May 2;14(5):440-7. doi: 10.1038/ncb2482.
10
Vesicle formation within endosomes: An ESCRT marks the spot.
Commun Integr Biol. 2012 Jan 1;5(1):50-6. doi: 10.4161/cib.18208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验