Weill Institute for Cell and Molecular Biology, Cornell University, Weill Hall, Ithaca, New York 14853, USA.
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a016766. doi: 10.1101/cshperspect.a016766.
The endosomal sorting complexes required for transport (ESCRT) drive multivesicular body (MVB) biogenesis and cytokinetic abscission. Originally identified through genetics and cell biology, more recent work has begun to elucidate the molecular mechanisms of ESCRT-mediated membrane remodeling, with special focus on the ESCRT-III complex. In particular, several light and electron microscopic studies provide high-resolution imaging of ESCRT-III rings and spirals that purportedly drive MVB morphogenesis and abscission. These studies highlight unifying principles to ESCRT-III function, in particular: (1) the ordered assembly of the ESCRT-III monomers into a heteropolymer, (2) ESCRT-III as a dynamic complex, and (3) the role of the AAA ATPase Vps4 as a contributing factor in membrane scission. Mechanistic comparisons of ESCRT-III function in MVB morphogenesis and cytokinesis suggest common mechanisms in membrane remodeling.
内体分选复合物(ESCRT)对于运输是必需的,它可以驱动多泡体(MVB)的生物发生和胞质分裂。最初通过遗传学和细胞生物学鉴定,最近的工作开始阐明 ESCRT 介导的膜重塑的分子机制,特别关注 ESCRT-III 复合物。特别是,几项光和电子显微镜研究提供了 ESCRT-III 环和螺旋的高分辨率成像,据称这些结构可以驱动 MVB 的形态发生和分裂。这些研究强调了 ESCRT-III 功能的统一原则,特别是:(1)ESCRT-III 单体有序组装成杂聚物,(2)ESCRT-III 作为一个动态复合物,以及(3)AAA ATPase Vps4 作为膜分裂的一个贡献因素的作用。ESCRT-III 在 MVB 形态发生和胞质分裂中的功能的机制比较表明了膜重塑中的共同机制。