Suppr超能文献

从连续语音中同时分割和泛化非相邻依存关系。

Simultaneous segmentation and generalisation of non-adjacent dependencies from continuous speech.

作者信息

Frost Rebecca L A, Monaghan Padraic

机构信息

Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK.

Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK.

出版信息

Cognition. 2016 Feb;147:70-4. doi: 10.1016/j.cognition.2015.11.010. Epub 2015 Nov 27.

Abstract

Language learning requires mastering multiple tasks, including segmenting speech to identify words, and learning the syntactic role of these words within sentences. A key question in language acquisition research is the extent to which these tasks are sequential or successive, and consequently whether they may be driven by distinct or similar computations. We explored a classic artificial language learning paradigm, where the language structure is defined in terms of non-adjacent dependencies. We show that participants are able to use the same statistical information at the same time to segment continuous speech to both identify words and to generalise over the structure, when the generalisations were over novel speech that the participants had not previously experienced. We suggest that, in the absence of evidence to the contrary, the most economical explanation for the effects is that speech segmentation and grammatical generalisation are dependent on similar statistical processing mechanisms.

摘要

语言学习需要掌握多项任务,包括对语音进行切分以识别单词,以及学习这些单词在句子中的句法作用。语言习得研究中的一个关键问题是,这些任务在多大程度上是顺序性的或相继性的,因此它们是否可能由不同或相似的计算过程驱动。我们探索了一种经典的人工语言学习范式,其中语言结构是根据非相邻依存关系来定义的。我们发现,当泛化是针对参与者之前未曾经历过的新语音时,参与者能够同时使用相同的统计信息对连续语音进行切分,以识别单词并对结构进行泛化。我们认为,在没有相反证据的情况下,对这些效应最经济的解释是,语音切分和语法泛化依赖于相似的统计处理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验