Wang Yuyang, Lu Li, Wu Meiyun
Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China.
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
Front Integr Neurosci. 2025 May 9;19:1460471. doi: 10.3389/fnint.2025.1460471. eCollection 2025.
Statistical learning (SL) is a fundamental cognitive ability enabling individuals to detect and exploit regularities in environmental input. It plays a crucial role in language acquisition, perceptual processing, and social learning, supporting development from infancy through adulthood. In this review, we adopt a multidimensional perspective to synthesize empirical and theoretical findings on SL, covering experimental paradigms, developmental trajectories, and neural mechanisms. Furthermore, we extend the discussion to the emerging intersection between SL and affective processes. Although emotional factors have recently been proposed to modulate SL performance, this area remains underexplored. We highlight current insights and theoretical frameworks addressing the SL-emotion interaction, such as predictive coding theory, and propose directions for future research. This review provides a comprehensive yet focused overview of SL across cognitive and affective domains, aiming to clarify the scope and future potential of this growing field.
统计学习(SL)是一种基本的认知能力,使个体能够检测并利用环境输入中的规律。它在语言习得、感知处理和社会学习中起着至关重要的作用,支持从婴儿期到成年期的发展。在本综述中,我们采用多维度视角来综合关于统计学习的实证和理论发现,涵盖实验范式、发展轨迹和神经机制。此外,我们将讨论扩展到统计学习与情感过程之间新出现的交叉领域。尽管最近有人提出情感因素会调节统计学习表现,但该领域仍未得到充分探索。我们强调了当前关于统计学习与情感相互作用的见解和理论框架,如预测编码理论,并提出了未来研究的方向。本综述全面且重点突出地概述了认知和情感领域的统计学习,旨在阐明这一不断发展的领域的范围和未来潜力。