Suppr超能文献

AG 中的词块边界会破坏依存关系处理:协调增量处理和离散采样。

Chunk boundaries disrupt dependency processing in an AG: Reconciling incremental processing and discrete sampling.

机构信息

Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

University Clinic Münster, Münster, Germany.

出版信息

PLoS One. 2024 Jun 18;19(6):e0305333. doi: 10.1371/journal.pone.0305333. eCollection 2024.

Abstract

Language is rooted in our ability to compose: We link words together, fusing their meanings. Links are not limited to neighboring words but often span intervening words. The ability to process these non-adjacent dependencies (NADs) conflicts with the brain's sampling of speech: We consume speech in chunks that are limited in time, containing only a limited number of words. It is unknown how we link words together that belong to separate chunks. Here, we report that we cannot-at least not so well. In our electroencephalography (EEG) study, 37 human listeners learned chunks and dependencies from an artificial grammar (AG) composed of syllables. Multi-syllable chunks to be learned were equal-sized, allowing us to employ a frequency-tagging approach. On top of chunks, syllable streams contained NADs that were either confined to a single chunk or crossed a chunk boundary. Frequency analyses of the EEG revealed a spectral peak at the chunk rate, showing that participants learned the chunks. NADs that cross boundaries were associated with smaller electrophysiological responses than within-chunk NADs. This shows that NADs are processed readily when they are confined to the same chunk, but not as well when crossing a chunk boundary. Our findings help to reconcile the classical notion that language is processed incrementally with recent evidence for discrete perceptual sampling of speech. This has implications for language acquisition and processing as well as for the general view of syntax in human language.

摘要

语言根植于我们组合单词的能力

我们将单词连接在一起,融合它们的含义。连接不仅限于相邻的单词,还经常跨越中间的单词。处理这些非相邻依赖关系 (NADs) 的能力与大脑对言语的抽样相冲突:我们以有限的时间片段来获取言语,每个片段仅包含有限数量的单词。目前尚不清楚我们如何将属于不同片段的单词连接在一起。在这里,我们报告说我们不能——至少不能很好地做到这一点。在我们的脑电图 (EEG) 研究中,37 名人类听众从由音节组成的人工语法 (AG) 中学习片段和依赖关系。要学习的多音节片段大小相等,这使我们能够采用频率标记方法。在片段之上,音节流包含 NADs,这些 NADs 要么局限于单个片段,要么跨越片段边界。EEG 的频率分析显示出在片段率处有一个频谱峰值,表明参与者学习了片段。跨越边界的 NADs 与片段内 NADs 的电生理反应较小。这表明 NADs 在局限于同一片段时被很好地处理,但在跨越片段边界时则不然。我们的发现有助于调和语言是逐步处理的经典概念与最近关于言语离散感知抽样的证据。这对语言习得和处理以及人类语言中语法的一般观点都有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617a/11185458/0295e2e881cb/pone.0305333.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验