Oprea B, Martínez L, Román E, Vanea E, Simon S, Huttel Y
Faculty of Physics & Institute for Interdisciplinary Research in Bio-Nano-Science, Babes-Bolyai University , 400084 Cluj-Napoca, Romania.
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) , c/Sor Juana Inés de la Cruz, 3, 28049 Cantoblanco, Madrid, Spain.
Langmuir. 2015 Dec 29;31(51):13813-20. doi: 10.1021/acs.langmuir.5b03399. Epub 2015 Dec 16.
The need to find new nanoparticles for biomedical applications is pushing the limits of the fabrication methods. New techniques with versatilities beyond the extended chemical routes can provide new insight in the field. In particular, gas aggregation sources offer the possibility to fabricate nanoparticles with controlled size, composition, and structure out of thermodynamics. In this context, the milestone is the optimization of the dispersion and functionalization processes of nanoparticles once fabricated by these routes as they are generated in the gas phase and deposited on substrates in vacuum or ultra-high vacuum conditions. In the present work we propose a fabrication route in ultra-high vacuum that is compatible with the subsequent dispersion and functionalization of nanoparticles in aqueous media and, which is more remarkable, in one single step. In particular, we will present the fabrication of nanoparticles with a sputter gas aggregation source using a Fe50B50 target and their further dispersion and functionalization with polyethyleneglycol (PEG). Characterization of these nanoparticles is carried out before and after PEG functionalization. During functionalization, significant boron dissolution occurs, which facilitates nanoparticle dispersion in the aqueous solution. The use of different complementary techniques allows us to prove the PEG attachment onto the surface of the nanoparticles, creating a shell to make them biocompatible. The result is the formation of nanoparticles with a structure mainly composed by a metallic Fe core and an iron oxide shell, surrounded by a second PEG shell dispersed in aqueous solution. Relaxivity measurements of these PEG-functionalized nanoparticles assessed their effectiveness as contrast agents for magnetic resonance imaging (MRI) analysis. Therefore, this new fabrication route is a reliable alternative for the synthesis of nanoparticles for biomedicine.
寻找用于生物医学应用的新型纳米粒子的需求正在推动制造方法的极限。具有超越传统化学路线的多功能性的新技术能够为该领域提供新的见解。特别是,气体聚集源提供了从热力学角度制造尺寸、成分和结构可控的纳米粒子的可能性。在此背景下,关键在于优化通过这些路线制造的纳米粒子的分散和功能化过程,因为它们是在气相中生成并在真空或超高真空条件下沉积在基板上的。在本工作中,我们提出了一种在超高真空下的制造路线,该路线与纳米粒子随后在水性介质中的分散和功能化兼容,更值得注意的是,这一过程可一步完成。具体而言,我们将展示使用Fe50B50靶材通过溅射气体聚集源制造纳米粒子,以及它们进一步用聚乙二醇(PEG)进行分散和功能化。在PEG功能化前后对这些纳米粒子进行表征。在功能化过程中,会发生显著的硼溶解,这有助于纳米粒子在水溶液中分散。使用不同的互补技术使我们能够证明PEG附着在纳米粒子表面,形成一层外壳使其具有生物相容性。结果是形成了一种纳米粒子结构,主要由金属铁核和氧化铁壳组成,周围环绕着分散在水溶液中的第二层PEG壳。对这些PEG功能化纳米粒子的弛豫率测量评估了它们作为磁共振成像(MRI)分析造影剂的有效性。因此,这种新的制造路线是合成用于生物医学的纳米粒子的可靠替代方法。