School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine, University of Nottingham, NG7 2RD, UK.
Acta Biomater. 2022 Oct 15;152:393-405. doi: 10.1016/j.actbio.2022.08.033. Epub 2022 Aug 23.
Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic tumour model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.
多核磁性氧化铁纳米粒子,纳米花(NFs),由于其复杂的内部磁序产生的强磁响应,具有作为交流磁场热疗的有效介体和磁共振成像对比剂的潜在生物医学应用。为了实现这些应用,必须设计合适的表面化学,以保持颗粒分散。这里描述了一种儿茶酚衍生的接枝方法,可将聚乙二醇(PEG)强键合到 NF 上,并提供稳定的氢键合水合层,即使在临床 MRI 场强和高浓度下,也能确保在缓冲液和介质中具有良好的长期胶体稳定性。该方法首次实现了对完全分散的 NF 的 MRI(弛豫率)和热疗(SAR)效率的全面研究。证实了内部磁化动力学在提供高弛豫率和 SAR 方面的主要作用,并表明这些性质不受 PEG 分子量或生物环境中冠状形成的影响。与传统的单核纳米粒子相比,这一结果形成了鲜明的对比,由于布朗贡献减少和 NP 溶剂相互作用减弱,PEG 化后和冠状形成后,SAR 和弛豫率显著降低。由于强烈固定的 PEG 层,所描述的 PEG 化 NF 悬浮液表现出可用的血液循环时间和体内弛豫率的有希望保留。这种生物材料设计方法解决了维持体内磁性纳米粒子作为治疗诊断剂的磁性效率的挑战。
多核磁性氧化铁纳米花(NFs)作为 AC 场热疗的有效介体和磁共振成像的对比剂的应用受到限制,因为在复杂介质和生物系统中缺乏胶体稳定性。所提出的优化材料设计被证明可重复提供具有缓冲液和复杂介质中优异胶体稳定性的 PEG 接枝 NF 悬浮液,具有显著的热疗和 MRI 实用性,不受 PEG 长度、锚固基团或生物分子吸附的影响。在选择的胰腺肿瘤模型中的沉积反映了脂质体制剂,提供了组织水平脂质体沉积的可量化探针,并且在肿瘤微环境中保留了弛豫率。因此,该生物材料设计解决了维持作为治疗诊断剂的纳米粒子的体内磁性效率的长期挑战。