Suppr超能文献

基因组时代的隐私问题。

Privacy in the Genomic Era.

作者信息

Naveed Muhammad, Ayday Erman, Clayton Ellen W, Fellay Jacques, Gunter Carl A, Hubaux Jean-Pierre, Malin Bradley A, Wang Xiaofeng

机构信息

University of Illinois at Urbana-Champaign.

Ecole Polytechnique Federale de Lausanne.

出版信息

ACM Comput Surv. 2015 Sep;48(1). doi: 10.1145/2767007.

Abstract

Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) an association with traits and certain diseases, identification capability (e.g., forensics), and revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward.

摘要

基因组测序技术发展迅速,现在已经能够以低成本生成高度详细的基因型。收集和分析此类数据有可能支持包括个性化医疗服务在内的各种应用。虽然生物医学界大力宣扬基因组学革命的好处,但此类数据可用性的提高对个人隐私有重大影响;特别是因为基因组具有某些基本特征,包括(但不限于)与性状和某些疾病的关联、识别能力(例如法医鉴定)以及揭示家族关系。此外,直接面向消费者的DNA检测增加了基因组数据在监管较少的环境(如互联网和营利性公司)中可用的可能性。因此,基因组数据隐私问题处于计算机科学、医学和公共政策的交叉点。虽然计算机科学家已经解决了各种数据类型的数据隐私问题,但对基因组数据的关注较少。因此,本文的目标是为计算机科学界提供知识系统化。在此过程中,我们解决了该领域的一些(有时是错误的)观念,并报告了我们与生物医学专家进行的一项关于基因组数据隐私的调查。然后,在描述了基因组隐私问题之后,我们回顾了针对基因组数据的隐私攻击的最新情况以及减轻此类攻击的策略,并从医学和公共政策的角度对此类攻击进行了背景分析。本文最后列举了基因组数据隐私面临的挑战,并提出了一个框架,以便在该领域向前发展时,将威胁分析和对策设计系统化。

相似文献

1
Privacy in the Genomic Era.基因组时代的隐私问题。
ACM Comput Surv. 2015 Sep;48(1). doi: 10.1145/2767007.
5
6
7
Patient privacy in the genomic era.基因组时代的患者隐私。
Praxis (Bern 1994). 2014 May 7;103(10):579-86. doi: 10.1024/1661-8157/a001657.
9
Privacy challenges and research opportunities for genomic data sharing.基因组数据共享的隐私挑战和研究机会。
Nat Genet. 2020 Jul;52(7):646-654. doi: 10.1038/s41588-020-0651-0. Epub 2020 Jun 29.

引用本文的文献

1
Language Modelling Techniques for Analysing the Impact of Human Genetic Variation.用于分析人类基因变异影响的语言建模技术
Bioinform Biol Insights. 2025 Sep 2;19:11779322251358314. doi: 10.1177/11779322251358314. eCollection 2025.
5
FedGMMAT: Federated generalized linear mixed model association tests.FedGMMAT:联邦广义线性混合模型关联测试。
PLoS Comput Biol. 2024 Jul 24;20(7):e1012142. doi: 10.1371/journal.pcbi.1012142. eCollection 2024 Jul.
6
A resampling-based approach to share reference panels.基于重采样的共享参考面板方法。
Nat Comput Sci. 2024 May;4(5):360-366. doi: 10.1038/s43588-024-00630-7. Epub 2024 May 14.
8
Ensuring Trust in Genomics Research.确保对基因组学研究的信任。
IEEE Int Conf Trust Priv Secur Intell Syst Appl. 2023 Nov;2023:1-12. doi: 10.1109/tps-isa58951.2023.00011.

本文引用的文献

3
SecureMA: protecting participant privacy in genetic association meta-analysis.SecureMA:在基因关联荟萃分析中保护参与者隐私
Bioinformatics. 2014 Dec 1;30(23):3334-41. doi: 10.1093/bioinformatics/btu561. Epub 2014 Aug 21.
5
Routes for breaching and protecting genetic privacy.突破和保护遗传隐私的途径。
Nat Rev Genet. 2014 Jun;15(6):409-21. doi: 10.1038/nrg3723. Epub 2014 May 8.
6
Identifying genetic relatives without compromising privacy.在不侵犯隐私的前提下识别基因亲属。
Genome Res. 2014 Apr;24(4):664-72. doi: 10.1101/gr.153346.112. Epub 2014 Mar 10.
7
UK biobank data: come and get it.英国生物银行数据:快来获取。
Sci Transl Med. 2014 Feb 19;6(224):224ed4. doi: 10.1126/scitranslmed.3008601.
10
Be prepared for the big genome leak.为大规模基因组泄露做好准备。
Nature. 2013 Jun 13;498(7453):139. doi: 10.1038/498139a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验